
The Nelson Mandela AFrican Institution of Science and Technology

NM-AIST Repository https://dspace.mm-aist.ac.tz

Computational and Communication Science Engineering Masters Theses and Dissertations [CoCSE]

2021-08

Sanger sequence automatic analysis

tool development

Mero, Victor

NM-AIST

https://doi.org/10.58694/20.500.12479/1580

Provided with love from The Nelson Mandela African Institution of Science and Technology

SANGER SEQUENCE AUTOMATIC ANALYSIS TOOL DEVELOPMENT

Victor Mero

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Master’s in Information and Communication Science and Engineering of the Nelson

Mandela African Institution of Science and Technology

Arusha, Tanzania

August, 2021

i

ABSTRACT

The Sanger sequencing technique still remains the cornerstone methods for the

Deoxyribonucleic acid (DNA) sequencing. This is due to its high accuracy in targeting smaller

genomic regions in a large number of samples, sequencing of variable regions and validating

results of other DNA sequencing platforms such as those from next-generation sequencing

studies. The analysis of Sanger sequence DNA data is computationally intensive requiring

efficient and high computational power software tools. The most preferred tools are the

proprietary licensed tools since they offer user-friendly interface and they offer more DNA

analysis functionalities. However, the affordability of the tools may be limited especially for

individual researchers or students due to their expensive licenses. Nevertheless, free and open-

source licensed tools are available and but are not user-friendly, have steep learning curve since

some lack graphical user interface, operating system platform dependent and have limited

functionalities. This study presents a Sanger Sequence Automatic Analysis Tool (SSAAT), a

software tool designed and implemented as a web application that provides a user-friendly

graphical interface such as those provided in proprietary tools. The tool has abilities to extract

raw data from sequence AB1 files, make base-calls, plot chromatogram, polymorphism

detection, sequence alignment and report generation. Furthermore, the tool is free and open-

source that can be easily accessed online through standard web browser applications. With the

above-mentioned features, SSAAT can be used by molecular biologist as an alternative to

proprietary tools and get comparable experience and DNA sequence analysis results.

ii

DECLARATION

I, Victor Mero do hereby declare to the senate of the Nelson Mandela African Institution of

Science and Technology that this dissertation is my own original work and that it has neither

been submitted nor being currently submitted for degree award in any other institution.

Victor Mero 05/08/2021

Candidate Name Signature Date

The above declaration is confirmed

Dr. Dina Machuve 05/08/2021

Supervisor Name Signature Date

Dr. Jean-Baka Domelevo Entfellner

Supervisor Name Signature Date

iii

COPYRIGHT

This dissertation is copyright material protected under the Berne Convention, the Copyright

Act of 1999 and other international and national enactments, in that behalf, on intellectual

property. It must not be reproduced by any means, in full or in part, except for short extracts in

fair dealing; for researcher’s private study, critical scholarly review or discourse with an

acknowledgment, without a written permission of the Deputy Vice Chancellor for Academic,

Research and Innovation, on behalf of both the author and the Nelson Mandela African

Institution of Science and Technology (NM-AIST).

iv

CERTIFICATION

The undersigned certify that they have read the dissertation titled: “Sanger sequence automatic

analysis tool development” and recommended for examination in fulfilment of the

requirements for the degree of Master’s in Life Sciences of the Nelson Mandela African

Institution of Science and Technology.

Dr. Dina Machuve 05/08/2021

Supervisor Name Signature Date

Dr. Jean-Baka Domelevo Entfellner

Supervisor Name Signature Date

v

ACKNOWLEDGMENT

First and foremost, I give thanks to the Almighty God for His protection, grace and throughout

my studies. He has seen me through the end of my studies at the Nelson Mandela African

Institution of Science and Technology (NM-AIST).

I highly appreciate the contribution of my supervisors, Dr. Dina Machuve, the internal

supervisor and Dr. Jean-Baka Domelevo Entfellner from Biosciences eastern and central Africa

(BecA-ILRI) Nairobi, Kenya. They both provided invaluable guidance throughout this

research. I acknowledge the support for the short research attachment at the Biosciences eastern

and central Africa (BecA-ILRI) hub in Nairobi campus for my research work.

I am extremely grateful to my parents and my young sisters, Sarah and Agnes for their love,

caring support and encouragement throughout my studies period. I am forever grateful for the

support from my lovely wife Shose and our son Shawn. They have given me love, prayers,

sacrifices, patience, and support during all the time of my studies.

My friends and colleagues at NM-AIST and the management of NM-AIST especially those

from CoCSE laboratory had a significant and important role during my studies and I thank you

all.

vi

DEDICATION

This work is humbly dedicated to my family.

vii

TABLE OF CONTENTS

ABSTRACT .. i

DECLARATION ... ii

COPYRIGHT ... iii

CERTIFICATION .. iv

ACKNOWLEDGMENT.. v

DEDICATION .. vi

TABLE OF CONTENTS ... vii

LIST OF TABLES .. xi

LIST OF FIGURES ... xii

LIST OF APPENDICES ... xiv

LIST OF ABBREVIATIONS AND SYMBOLS .. xv

CHAPTER ONE .. 1

INTRODUCTION ... 1

1.1 Background of the Problem .. 1

1.2 Statement of the Problem .. 5

1.3 Rationale of the Study ... 5

1.4 Research Objectives .. 5

1.4.1 General Objective ... 5

1.4.2 Specific Objectives ... 6

1.5 Research Questions ... 6

1.6 Significance of the Study .. 6

1.7 Delineation of the Study ... 6

CHAPTER TWO ... 7

LITERATURE REVIEW .. 7

2.1 Deoxyribonucleic Acid (DNA) ... 7

viii

2.2 Deoxyribonucleic Acid Sequencing ... 8

2.3 Sanger Sequencing .. 9

2.4 Bioinformatics... 11

2.4.1 Bioinformatics Programming Languages ... 11

2.5 Open-source Software vs Proprietary Software .. 13

2.6 Command-line Interface Software Tools .. 14

2.7 The Graphical User Interface Software .. 15

2.8 Web Application Technology ... 15

2.9 Existing Open-Source Software Tools Sanger Sequence Analysis 16

2.10 Usability .. 18

2.10.1 Usability Evaluation Methods .. 19

CHAPTER THREE ... 20

MATERIALS AND METHODS ... 20

3.1 Study Area .. 20

3.2 Scope of the Study .. 20

3.3 Methodology ... 20

3.4 Requirement Engineering ... 21

3.4.1 Requirement’s Specification... 21

3.5 Software Tool Design ... 23

3.5.1 Design Concept... 23

3.5.2 Unified Modeling Language (UML) Use-Case Diagram 25

3.5.3 Unified Modeling Language Sequence Diagram 26

3.5.4 Architectural Design ... 28

3.5.5 Data Flow Diagram .. 29

3.6 Development ... 30

3.6.1 Prototype Development .. 30

3.6.2 Assumptions ... 33

ix

3.6.3 Software Tool Components .. 34

3.7 Testing... 37

3.8 Validation of SSAAT .. 38

3.8.1 Usability Testing Methodology .. 38

3.8.2 Participants and Durations .. 38

3.8.3 Tasks ... 39

CHAPTER FOUR .. 41

RESULTS AND DISCUSSION .. 41

4.1 Developed Tool ... 41

4.2 Developed Tool Results .. 41

4.3 Features of the Developed Tool .. 43

4.3.1 Reading AB1 Files.. 43

4.3.2 Base Calling .. 44

4.3.3 Chromatogram Viewer ... 45

4.3.4 Chromatogram Width ... 45

4.3.5 Trimming .. 46

4.3.6 View Trimmed Region ... 46

4.3.7 Sequence Alignment ... 47

4.3.8 Local Alignment ... 47

4.3.9 Global Alignment ... 47

4.3.10 Glocal Alignment ... 47

4.3.11 Polymorphism Detection .. 48

4.3.12 Report Generation .. 48

4.4 Validation Results ... 49

4.4.1 Unit Testing Results ... 49

4.4.2 Integration Testing Results ... 50

4.4.3 System Testing Results ... 51

x

4.4.3 System Performance Testing Results ... 52

4.4.4 Compatibility Testing Results .. 53

4.4.4 Usability Testing Results .. 54

4.4 Discussion ... 58

CHAPTER FIVE ... 60

CONCLUSION AND RECOMMENDATIONS .. 60

5.1 Conclusion .. 60

5.2 Recommendations ... 61

REFERENCES .. 63

APPENDICES ... 73

RESEARCH OUTPUTS .. 89

xi

LIST OF TABLES

Table 1: Functional Requirements ... 22

Table 2: Non-Functional Requirements .. 23

Table 3: Sanger Sequence Automatic Analysis Software Tool Designing Participants 23

Table 4: Phred Quality Score and Base-Call Accuracy Relationship 36

Table 5: Task for Usability Testing ... 40

Table 6: Finding Results for the Sanger Sequence Analysis Existing Tools 42

Table 7: Sanger Sequence Analysis Tool Unit Test Cases .. 49

Table 8: System Testing Results ... 52

Table 9: Performance Testing Audits .. 53

Table 10: Usability Test Tasks Completion Rate .. 55

Table 11: System Usability Scale (SUS) Results .. 57

xii

LIST OF FIGURES

Figure 1: Sanger DNA Sequencing (Sequencing, Forensic Analysis and Genetic) 4

Figure 2: Deoxyribonucleic Acid (DNA) Chromatogram (pixabay.com) 5

Figure 3: DNA-base (Wikimedia Commons, the free media repository) 7

Figure 4: Sanger Sequencing (Wikimedia Commons, the Free Media Repository) 10

Figure 5: The SSAAT Design Wireframe ... 25

Figure 6: UML Use Case Diagram for Sanger Sequence Automatic Analysis Software Tool

 .. 27

Figure 7: UML Sequence Diagram for Sanger Sequence Automatic Analysis Software Tool

 .. 28

Figure 8: Sanger Sequence Automatic Analysis Software Tool Architectural Design 29

Figure 9: Data Flow Diagram .. 30

Figure 10: Prototyping Software Development Life Cycle ... 31

Figure 11: Sanger Sequence Automatic Analysis Tool Mockup ... 32

Figure 12: Sanger Sequence Automatic Analysis Software Tool Components Block Diagram

 .. 34

Figure 13: Sanger Sequence Automatic Analysis Tool (SSAAT) Main Page 43

Figure 14: Applied Biosystems File Format File Upload Field Interface 44

Figure 15: Deoxyribonucleic Acid Sequence Extract by SSAAT ... 44

Figure 16: Chromatogram File Quality Score ... 45

Figure 17: 100 Base Per Line Chromatogram Setting ... 46

Figure 18: 300 Base per Line Chromatogram Setting ... 46

Figure 19: Automatic Trimming Option and a Display Removed Bases 47

Figure 20: Single Nucleotide Polymorphism (SNP) Highlighted in Chromatogram Viewer 48

Figure 21: Report Generation .. 49

Figure 22: Sanger Sequence Analysis Tool Performance Testing for Desktop Device 53

Figure 23: Sanger Sequence Analysis Tool Compatibility Testing Results 54

xiii

Figure 24: Mean Completion Time Versus Tasks ... 56

xiv

LIST OF APPENDICES

Appendix 1: Sanger Sequence Automatic Analysis Tool Server Source Code 73

Appendix 2: Sanger Sequence Automatic Analysis Tool User Interface Source Code 79

Appendix 3: Sample Output the DNA Data In Fasta Format ... 86

Appendix 4: Sequence Alignment Results ... 86

Appendix 5: Chromatogram Viewer Results .. 87

xv

LIST OF ABBREVIATIONS AND SYMBOLS

A Adenine

AB1 Applied Biosystems File Format

ASAP Automated Sanger Analysis Pipeline

BecA-ILRI Bioscience Eastern and Central Africa, International Livestock Research

Institute

BLAST Basic Local Alignment Search Tool

C Cytosine

CLI Command-Line Interface

CMD Command Prompt

CoCSE Computational and Communication Sciences and Engineering

CPAN Comprehensive Perl Archive Network

CPU Central Processing Unit

CRAN Comprehensive R Archive Network

CSS Cascading Style Sheet

DNA Deoxyribonucleic Acid

EMBL European Molecular Biology Laboratory

EMBOSS European Molecular Biology Open Software Suite

FASTA Fast-All File Format

G Guanine

GUI Graphical User Interface

HCI Human–Computer Interaction

HTML Hypertext Markup Language

IDE Integrated Development Environment

IP Internet Protocol

NCBI National Center for Biotechnology Information

Next-Gen Next Generations Sequencing

NM-AIST Nelson Mandela African Institution of Science and Technology

R Programming Language for Statistical Computing and Graphics

SSAAT Sanger Sequence Automatic Analysis Tool

T Thymine

TCP Transmission Control Protocol

UML Unified Modeling Language

1

CHAPTER ONE

INTRODUCTION

1.1 Background of the Problem

Deoxyribonucleic Acid (DNA), is the genetic material found in almost all living organisms that

include single-celled microorganisms, and multicellular mammals like human beings. The

DNA are the information molecules of cells containing the genetic code, all messages that

determine traits of organisms. It is found in the cell nucleus where it is named nuclear DNA,

merely a small amount of DNA can as well be found in the cell’s structures known as

mitochondria that converts the energy from food into a form that cells can use.

The hereditary material in DNA is stored as a cipher made up of four nucleobases: adenine (A),

guanine (G), cytosine (C), and thymine (T). The human DNA consists of about 3 billion bases,

and only 1 % of those nucleobases are the different in all human population. The sequence of

these nucleobases determines the building information for a living thing. The order is similar

to how the alphabetical letters appear in a certain arrangement to compose words and sentences.

Deoxyribonucleic Acid bases pair up with each other, A with T and C with G, to form units

called base pairs. Each base is also attached to a sugar molecule and a phosphate molecule.

Together, a base, sugar, and phosphate are called a nucleotide. The assembly of the double

helix is slightly comparable to a ladder, with the nucleobase pairs forming the ladder’s step and

the phosphate and sugar molecules making the vertical side parts of the ladder. Each strand of

DNA in the double helix can serve as a pattern for reproducing the sequence of other

nucleobases.

There are several areas of which DNA studies contribute to and among them are genetics and

medical research. Since the discovery of DNA, the capability to diagnose diseases at an early

stage has been extremely improved. Furthermore, DNA technologies have provided better

ways to evaluate animals and human’s genetic vulnerability to specific diseases. In this regard,

pharmaceuticals have paved their way to develop new drugs to treat these diseases. Drugs can

now be custom produced to match individual human biochemistry and genetic makeup. Some

of diseases were previously considered deadly and their treatment remained in vain for a long

time, however, through the DNA technologies innovations has speed up the advancement of

drugs that could cure those diseases.

2

Though the invention of DNA has influenced the advancement of medicine mostly, its impact

to other industries is still noteworthy. Fatherhood cases have a massive impact on families

around the globe. Additionally, the use of DNA assessment has help to identify the paternity

of children of which has an outstanding result to both their upbringing and their lives.

Deoxyribonucleic Acid has been notably important to the field of forensic science (Van-

Oorschot et al., 2010). The DNA technology advancement has also improved the forensic

investigation whereby the guilt or innocence of a victim being investigated for a wrongdoing

can be determined (Roach, 2010). It likewise implies that uncommon evidence can still produce

important signals regarding the committer of a crime. Similarly, the identification of victims

can occur, particularly in scenarios where the victim's condition is unrecognizable to relatives

(Taylor & Kieser, 2016). In this sense, DNA has been important in revolutionizing the entire

field of forensic science (Taylor & Kieser, 2016; Van-Oorschot et al., 2010).

Determination of the order of DNA nucleotides in biological samples is known as DNA

sequencing. This involves the use of scientific methods or technology to determine the order

of the four bases: adenine (A), guanine (G), cytosine (C), and thymine (T). Since the discovery

of DNA structure by Watson and Crick in 1950s (Watson & Crick, 1953), DNA sequencing

has become essential for molecular biology research, and in several applied fields including

medical diagnosis, biotechnology, forensic investigation, and microbiology. Up to date, there

are about three generations of DNA sequencing technologies from the famous Sanger

sequencing to the Next Generation or Next-Gen sequencing technologies such as single-

molecule real-time (SMRT) and many others (Heather & Chain, 2016).

The Sanger sequencing is the first-generation technique named after its founder Fredric Sanger

in the 1970’s. It is a result of the chemical reaction chain-termination of polymerase chains.

Sanger sequencing is still a widely used method for sequencing DNA (Shendure et al., 2017).

This is due to its high sequencing accuracy as compared to the Next-Gen technologies. It is

most efficient in sequencing DNA nucleotides with utmost accuracy in short fragments of

DNA, small-scale genome projects and also used to validate the results from the Next-Gen

DNA sequences.

Sanger sequencing of a genomic region usually involves a chemical polymerase chain reaction

(PCR) between a single-stranded DNA template, a sequencing primer, a DNA polymerase,

nucleotides (dNTPs), dideoxy nucleotides (ddNTPs), and a pH stability buffer (Goldberg et al.,

3

2006; Pareek et al., 2011; Rajeev et al., 2015). Next step, the chain-terminated short DNA

molecules are detached by their size by means of gel electrophoresis. In gel electrophoresis,

DNA samples are filled into one end of a gel matrix, and an electric current is applied; Since

DNA is negatively charged, so the short DNA molecules will be drawn towards the positive

electrode of the gel. As all DNA fragments have the similar charge per unit of mass, the speed

at which the short DNA molecules migrate will be measured by their size. The smaller fragment

has less friction to moves through the gel, and hence are will migrate faster than the bigger one

(Kircher & Kelso, 2010; Shendure et al., 2017). In conclusion, the small DNA molecules will

be organized from smallest to largest, whereby reading is of the gel done through a bottom-up

approach. The last step simply involves reading the gel to determine the sequence of the input

DNA. Because DNA polymerase only synthesizes DNA in the 5’ to 3’ direction starting at a

provided primer, each terminal ddNTP will correspond to a specific nucleotide in the original

sequence (e.g., the shortest fragment must terminate at the first nucleotide from the 5’ end, the

second-shortest fragment must terminate at the second nucleotide from the 5’ end, etc.)

Therefore, by reading the gel bands from smallest to largest, we can determine the 5’ to 3’

sequence of the original DNA strand. Sanger sequencing quality relies on the “base calling

quality”, i.e. the relative certainty with which the base is determined based on the reading by

the fluorescence detector in front of which the dye-terminated fragments migrate decreases

dramatically towards the end of the fragment, because of the limited separation power of the

capillary matrix when it comes to long fragments. The two chain-terminated fragments

corresponding to the extension of the two primers are on complementary strands of the template

DNA, one of the two fragments have to be reverse-complemented before the extent of the

overlap is checked and the two fragments are assembled into one clean sequence. Figure 1

illustrates the Sanger DNA sequencing process from the DNA template, chemical chain

reactions and finally the sequencing.

4

Figure 1: Sanger DNA Sequencing (Sequencing, Forensic Analysis and Genetic)

Through the use of automatic DNA sequencer machines like those of Applied Biosystems, the

obtained DNA sequence is then saved as a chromatogram. A chromatogram is a graph showing

the result of separating the components of a mixture by chromatography procedure for

illustration (Fig. 2). It is saved on a file with an extension *.ab1 or *.AB1. Base-calling is the

process of assigning nucleobases to chromatogram peaks. To assess the base calling accuracy

of sequenced DNA data, usually, a visual inspection of the sequence trace is done using

chromatogram viewing program. Most often proprietary software like CLC Genomics

Workbench($5000/year), Qiagen ($4500/year), SeqMan ($5950/year) or the software tools

developed by Applied Biosystems sequencer machines are used in big laboratories since they

are designed for non-computer professionals and advertised as all-inclusive bioinformatics

software (Smith, 2014). Although they attractively designed, powerful, and user-friendly

proprietary bioinformatics software tools are expensive for individual researchers, teachers and

students to choose the right software for their needs, especially if they do not have a

bioinformatics background. Alternatively, there are free software tools for Sanger sequence

such as SangerSeqR, Tracy, Phred, ASAP, seqTrace, Shiftdetector (Ewing & Green, 1998; Hill

et al., 2019; Seroussi et al., 2002; Singh & Bhatia, 2016; Stucky, 2012) however, the

mentioned tools are limited in usage since most them are command-line based tools, limited to

single functionality, and cross platform dependent.

5

Figure 2: Deoxyribonucleic Acid (DNA) Chromatogram (pixabay.com)

1.2 Statement of the Problem

There are limitations on accessing proprietary software Sanger sequence analysis due to the

high costs of the license (Kant, 2010). Alternatively, there have been some attempts to build

free, open-source software to deal with the analysis of Sanger sequencing data but also, they

are limited since most of them offers specific functionalities. In addition to that, most of these

tools are platform-dependent, and some of them are not user friendly since they lack a graphical

user interface (Feizi & Wong, 2012).

Hence there is a need to develop a free and open-source tool which will provide a user-friendly

graphical user interface, and cross-platform capabilities while providing functionalities such as

base-calling, chromatogram viewer, sequence alignment, polymorphism detection and report

generation.

1.3 Rationale of the Study

The development of the free and open-source tool will solve the challenges faced by biologists

and other researchers, mainly by cutting off the purchasing expensive proprietary licenses for

the DNA analysis tools.

1.4 Research Objectives

1.4.1 General Objective

The main objective of this study was to develop a user-friendly cross-platform software tool

for analyzing Sanger sequence data at a nucleotide level.

6

1.4.2 Specific Objectives

(i) To assess the usability of the existing software for Sanger sequence data.

(ii) To develop an automated software for analysis of Sanger sequence data files.

(iii) Usability assessment of developed software.

1.5 Research Questions

To achieve the objectives of the study, the following are research questions:

(i) What is the contribution of the existing software for Sanger sequence DNA analysis?

(ii) How will the proposed software help the analysis of Sanger sequence data files?

(iii) What value is added by the developed software compared to the existing ones?

1.6 Significance of the Study

The study aims to break the barrier for individual biologist or students to accessing the DNA

analysis software due to expensive proprietary licenses through the development open-source

free tool that will provide proprietary experience. The tool will provide a platform

interoperability and user-friendly graphical interface to enable users to focus on the analyses

and not learning how to use the system. Moreover, the tool will contribute to the Sanger

sequence DNA analysis open-source software community.

1.7 Delineation of the Study

The Sanger sequence DNA analysis will be developed by using the software requirements

collected during the review of the existing open-source software tools for Sanger sequence

analysis. This is study is limited to the Sanger DNA sequencing method and scoped at the

nucleotide level analysis.

7

CHAPTER TWO

LITERATURE REVIEW

2.1 Deoxyribonucleic Acid (DNA)

Deoxyribonucleic Acid (DNA) is a chemical molecule that contains the living things genetic

blueprint (Samanta, Bhaumik, Barman, & Maity, 2017). Deoxyribonucleic acid stores

hereditary information that constitutes and maintain living things. The DNA molecule is

comprised of four types of nitrogenous bases (nucleotide) namely adenine (A), guanine (G),

cytosine (C) and thymine (T). Adenine and guanine are two-carbon nitrogen ring chemical

structure known as purines while cytosine and thymine are one-carbon nitrogen ring chemical

structure known as pyrimidines. Purines bases bonds with pyrimidines bases to form the

nucleotides base pairs which are the building block of the nucleic acids. Figure 3 shows the

structure of DNA and the nucleotides chemical structure diagrams.

Figure 3: DNA-base (Wikimedia Commons, the free media repository)

The differences in DNA affect how different proteins are created within cells, and determine

the biological differences between each living organism (Hingorani, 2013). The DNA sequence

variation such as Single Nucleotide Polymorphism (SNP), that occurs when a single nucleotide

in the genome varies from other members of a species and may lead to physical change. For

8

instance, human beings’ appearance while others may determine someones’ health status

(Leaché & Oaks, 2017). Sometimes SNPs do not affect (Leaché & Oaks, 2017), and sometimes

they can result in positive or negative effects on the body functions (Clevenger et al., 2015;

Kuhner et al., 2000; Leaché & Oaks, 2017). Different variations in organism genetics can

determine such as whether a person is likely to have a food intolerance, how you metabolise

different parts of your diet, vitamin deficiencies, and which fitness and skincare regimes are

likely to work for a person (Ewens, 2013; Jorde & Wooding, 2004). The knowledge on

variations of genes for a particular person enables the decision making in lifestyle changes to

optimize ones’ health and wellbeing (Gonzaga-Jauregui et al., 2012; Zhang et al., 2009).

Besides, investigating DNA deletion/insertion polymorphism is important since polymorphism

may be a result of mutations which frequently cause genetic disease. It was reported that 70%

of the mutations in cystic fibrosis patients results from a three base pairs deletion (Luan et al.,

2013; Martins et al., 2019).

2.2 Deoxyribonucleic Acid Sequencing

Deoxyribonucleic Acid sequencing refers to the procedural steps of finding the order of

nucleotides in a DNA molecule. It involves techniques and technologies that may be used to

determine the order of the four DNA’s nucleotides which are adenine, guanine, cytosine, and

thymine.

Familiarity with DNA sequences is vital for most biological research and in several interrelated

fields such as forensic biology, medical diagnosis, biotechnology and virology (Chmielecki &

Meyerson, 2014; Pereira et al., 2008). The comparison between normal and varied DNA

sequences can help in diseases diagnosis such as various cancers, characterize antibody

accumulation, and can be used to guide patient treatment (Abate et al., 2013; Chmielecki &

Meyerson, 2014; Pekin et al., 2011). The rapid methods to sequence DNA would increase more

research throughput which is of many advantages especially for precision medical care, and for

more living Next-Gen to be identified and registered (Abate et al., 2013).

There are basic DNA sequencing techniques like Maxam-Gilbert sequencing which make use

of chemical alterations of DNA and subsequent cleavage at specific bases (Maxam & Gilbert,

1977). Also, there is a Sanger sequencing technique which uses the dideoxynucleotides chain-

termination approach. Sanger sequencing method when invented used fewer toxic chemicals

and lower amounts of radioactivity than the Maxam and Gilbert method. It became the method

9

of choice, due to its relative ease and reliability (Sanger et al., 1977). These techniques are also

known as first-generation DNA sequencing techniques.

There are also advanced and De novo DNA sequencing techniques. Advanced techniques

perform sequencing of long DNA pieces, such as chromosomes. Also, these sequencing

techniques can be used to produce large numbers of DNA short sequences (Delseny et al.,

2010). On the other hand, the De novo techniques are used to discover novel DNA sequences

(Pareek., 2011). Some of these methods are 454 pyrosequencing, Illumina sequencing, Polony

sequencing, and SOLiD sequencing. Together these techniques are categorized as high-

throughput DNA sequencing also known as Next-Generation Sequencing (Straiton et al.,

2019).

2.3 Sanger Sequencing

The Sanger DNA sequencing technique involves chain-termination of the elongating inhibitors

of DNA polymerase amid the Vitro DNA replication (Sanger et al., 1977). This technique is

among the most famous methods used for determining sequence nucleotide sequences in DNA

(Shendure et al., 2017). It is efficient to sequence with utmost accuracy short fragments of

DNA (Pareek et al., 2011). Sanger sequencing was commercialized by Applied Biosystems

where automatic sequencer machines replaced the manual procedures for the DNA sequencing

(Biosystems, 2006). Figure 4 illustrates Sanger sequencing processes from the DNA extraction

to the generation of the chromatogram. A chromatogram is a visible record such as a graph

showing the result of separating the components of a mixture by chromatography procedure in

which is stored in the AB1 file.

Sanger sequencing deals with a composite of DNA chains of different lengths, where these

fragments are then detached by capillary tube electrophoresis. Electrophoresis is an electro-

kinetic method which separates charged particles in a fluid using a field of electrical charge.

The method uses an electric field to pull molecules across the capillary fibre (Sanger et al.,

1977). Additional analysis including both primary and secondary analysis are commonly

followed to conclude the analysis. Primary analysis software tools usually come as built-in

with the default setting in most of the sequencing platforms (Pereira et al., 2008).

10

Figure 4: Sanger Sequencing (Wikimedia Commons, the Free Media Repository)

The secondary analysis tools further enhance the sequencing results with features such as

polymorphism (the different DNA sequences among individuals, groups, or populations)

detection, sequence alignment (a way of positioning the sequences of DNA to identify regions

of similarity between the sequences), and production of graphical outputs. Most preferably,

software for these tasks are proprietary which require purchasing a license. Most proprietary

software are expensive (Loubani et al., 2008). On the contrary, free software is available but

they are few and some are limited with functionalities.

Raw DNA data contains hidden biological information which are to be revealed for further

studies (Rajeev et al., 2015). Sanger sequence analysis is vital for the extraction of information

of the trace data obtained as a product of Sanger sequencing. Traces obtained need first to be

read and assigned bases (nucleotides) on the chromatogram peaks through a base-calling

algorithm and later to be visually verified by users through trace viewing program (Lanka et

al., 2014). Recently, it has been reported that Sanger sequencing has been substituted by high-

throughput sequencing techniques, particularly for large-scale, automated genome analyses

(Straiton et al., 2019). Nevertheless, the Sanger sequence remains the cornerstone DNA

sequencing technique used for small-scale projects, and validation of high-throughput results

11

(Shendure et al., 2017). The technique is more preferred over short-read sequencing

technologies due to its capabilities to produce DNA sequence reads of more than 500

nucleotides (Shendure et al., 2017).

2.4 Bioinformatics

Bioinformatics is an interdisciplinary field that develops methods and software tools for

understanding biological data (Hogeweg, 2011). This interdisciplinary field of science is

comprised biology, computer science, information engineering, mathematics and statistics with

main goals of analyzing and interpreting biological data.

Bioinformatics uses computational programming as part of the methodology to develop

methods, tools and analysis pipelines to study biological data (Singh & Bhatia, 2016). Mainly,

bioinformatics is being used to find out the identity of candidate genes and genetic

polymorphism (Cornuet et al., 2014). These identifications aim to understand better the

difference between population, unique adaptation, peculiar properties and genetic basis of

diseases (Rozas et al., 2017; Singh & Bhatia, 2016). Moreover, bioinformatics is being applied

to study the structure and operating principles of nucleic acids and proteins sequences (Pop &

Salzberg, 2008).

2.4.1 Bioinformatics Programming Languages

(i) The C / C++

The C/C++ are pre-compiled high-level programming languages that have the best

performance in speed of execution since they have wrapping routines and higher-level function

calls (Fourment & Gillings, 2008). The downside of these programming languages is memory

leaks since they have no garbage collection (Serebryany et al., 2018). They are largely used for

building enhanced command-line tool related to aligners and variant-callers (Aruoba &

Fernández-Villaverde, 2015). Nevertheless, they still have a steep learning curve as compared

to a scripting language such as Python. Most of the programmers tend to avoid C/C++ since it

will cost one to write long lines of codes as compared to Python to similar tasks. For this reason,

C/C++ are be used for a specific purpose such as to build back-end applications that require

fast execution and less memory.

12

(ii) Perl

Perl was by far the most popular scripting language for handling genetic sequencing data during

the ’90s (Fourment & Gillings, 2008). It still has its legacy and there are still many coders who

use it as their primary scripting language. It has the Comprehensive Perl Archive Network

(CPAN), a software packages repository small install new modules (Tregar & Tregar, 2002).

BioPerl, is among the earliest biological repositories that increases the usability of computation

methods, for example change of setups to conduct genetic research (Jason et al., 2002). There

is several biological software that is written in Perl such as GBrowse which is among the

popular genome web browser. Excessive test units is still in demand for persons uses, yet it is

declining out of use after the rise of Python. Both Perl and Python have comparable accomplish

alike tasks and is easier to write code for, especially for new learners (Fourment & Gillings,

2008).

(iii) Python

Python is an open-source interpreted, high-level, general-purpose programming language

(Aruoba & Fernández-Villaverde, 2015; Sanner, 1999). Influential, flexible, and easy to use

(Aruoba & Fernández-Villaverde, 2015). Python is a simple language for building software

tools and applications for data sciences (Boschetti, 2014). It has Biopython, is an open-source

repository of uncommercial Python tools and methods for computational biology and

bioinformatics, maintained by an international association of developers (Cock et al., 2009).

(iv) The R Programming Language

R is a software and statistical programming language that is maintained by supported by the R

Foundation for Statistical Computing (Chambers, 2008; R. Gentleman, 2009; Ihaka &

Gentleman, 1996). The programming language is free and open-source programming language

that produces attractive graphics (Chambers, 2008). Graphs are just great with R programming

language. Additionally, the language is broadly used among the mathematical community plus

more recently in the data science as well as Artificial Intelligence community (Marwick et al.,

2017). It has the central repository (CRAN) which provides easy installation of packages

(Hornik et al., 2017). Moreover, it has Bioconductor the biological software repository for R

which is the largest repository and community support among others using a different

programming language (Gentleman et al., 2004; Huber et al., 2015). Bioconductor has R-studio

packages that are integrated development environment software for usage R in a Matlab style

13

(Allaire, 2015).

R is an interpreted programming language and it has similar functionalities as those for Python

programming language (Aruoba & Fernández-Villaverde, 2015). The difference between R

and Python is, R programming language is purely data analysis built-in language while Python

is a general purposes programming language (Sugiyama et al., 2018). It is from this ground R

is a recent preferably programming language among statistician and especially

bioinformaticians since it offers more computational packages for their analyses (Gentleman,

2009; Jiang et al., 2013).

Furthermore, R is flexible and its implementation can be embedded in another programming

language such as in C/C++ (Eddelbuettel & François, 2011). This feature makes R computation

to be done in cross platforms environments. Also, the execution speed of the program's written

in R can be improved by its implementation in fast execution high-level programming such as

C and for better memory management (Eddelbuettel & François, 2011). Moreover, R scripts

can be written in a way that could establish a connection to the command-based software tools

to a front-end application.

2.5 Open-source Software vs Proprietary Software

Open source refers to any things that can be modified and shared since it was designed to be in

publicly accessible (Open Source Initiative, 2010). Open-source software is the computer

software in which source code is released under a license in which the author grants users the

rights to study, alter, enhance and share the software to anyone with no limit of how to use

(O’Neill, 2012). This is quite different to the proprietary or closed source software whereby

the source code part of the software is hidden for most of the users to access and it can only be

manipulated only by the author, team, or an organization created it to change, update, upgrade

and fixing faults of the software application (Lee et al., 2009). Open-source software is

preferred most since they offer unlimited accessibility of the software source codes by anyone

with a free license (Open Source Initiative, 2010). This gives control to anyone using the

software to decide on how to use the kind of software. Users may modify the software by

adding or removing some parts of the application based upon one need (Saldanha, 2004;

Zschoch, 2007).

It is important to note that open source software projects offer an eye-opening illustration of

new ways to innovate for newbies, scholars and professionals in many fields (Von-Krogh &

14

Von-Hippel, 2006). Besides, open-source software offers source code reusability whereby

similar codes for a particular software can be used in writing another software to perform

similar or different tasks, this important for software evolution (Haefliger et al., 2008). Studies

also show that open source software is well secured (Herzog, 2016; Hoog, 2011; Payne, 2002;

Walden et al., 2009). Open-source software is preferred because of security since it can be

accessed and modified by anyone and hence errors or any vulnerabilities might be spotted for

correction or fix that might have missed by the program's author (Herzog, 2016). Moreover, it

has studied that open source software to be more stable since its source code are publicly

distributed (Pirhadi et al., 2016). Recently, users have started gaining trust on that software for

critical tasks being sure their tools will not go away if their original developers stop working

on them (Gamalielsson & Lundell, 2014). It comes as no surprise that open source software

offers big support to users, this being a result of a large community of users and developers

(Gamalielsson & Lundell, 2014). Since its software source codes can be accessed publicly it

becomes easier to provide support at all levels (Steinmacher et al., 2016).

2.6 Command-line Interface Software Tools

A command-line interface (CLI) refers to the type of a computer program where the user

request services from the program through typing successive command lines in form of text

(Feizi, 2013). The program has a command-line processor or interpreter to handle the

commands (Grant, 2012). In the matter of fact, most operating systems implement a command-

line interface where users interactively access the operating system’s functions or services.

Most popular command-line interpreters include command prompt (CMD) for Microsoft

Windows operating system (Sharp, 2007) and bash terminal for Linux and Mac operating

systems (Stothard, 2016). Most of the software developers and advance computer users such

as system administrators prefer to use CLIs due to its abilities to consume fewer system

resources, fast execution and simplified task automation (Barrett et al., 2004). Even though

software developers and advanced users rely heavily on CLIs to perform tasks efficiently, most

of the normal users rarely use CLIs (Sutter, 2006). The usage of CLIs involves issuing

command-lines which are predefined and require to be memorized by users and hence they

prefer to use graphical user interface applications (Feizi & Wong, 2012).

15

2.7 The Graphical User Interface Software

The graphical user interface (GUI) is a kind computer interface that enables users to interact

with computer application through graphical icons, menus and pointing devices (Seneviratne,

2008), instead of command-based user interfaces. It is specifically designed to make use of

computer’s graphics capabilities to make the software application or program much easier to

use. GUIs came after the reaction to the perceived steep learning curve of command-line

interfaces (CLIs) (Seneviratne, 2008; Shahand et al., 2011) which requires commands to be

typed in by users to access an application’s services. Designing the visual elements and

attribute the behaviour of a GUI is a crucial part of human-computer interaction (HCI) software

application programming. The graphical user interface aims to enhance the efficiency and ease

of use for the fundamental logical design of a stored software application towards satisfaction

in a specified environment of use.

2.8 Web Application Technology

Web applications are simply dynamic websites combined with server-side programming to

provide functionalities like those provided by a desktop application to interact with users,

connecting to back-end databases, and generating results to browsers. Web applications came

to solves the software application environment dependencies issues (Nguyen et al., 2016).

Through a web application, we are now able to share applications across the globe no matter

what operating system your electronic device has as long as it has web browsers and an internet

connection you can get access to it (Beeley, 2013).

Recently, software development companies rise a strategy to provide web access to software

previously distributed as desktop applications (Mikkonen & Taivalsaari, 2011). Since the

presentation technology here is entirely changed, it also requires the development of an entirely

different browser-based interface application that will adapt the behaviour of an existing

application (Guinard, 2011). This technology allows the user to use the application without the

need to install it on a local storage disk (Mikkonen & Taivalsaari, 2011).

Development of web applications is much simplified by the use of web application

frameworks. Through frameworks, rapid application development has been achieved whereby

the development team focus on the parts of their application which are unique to their goals

(Ishimaru et al., 2014; Vuksanovic & Sudarevic, 2011). Numerous frameworks which are used

are open-source software is open source this also has facilitated the development of web

16

applications since the developers are not limited to framework license (Beeley, 2013).

The use of web application frameworks reduces the number of errors in coding an application,

simplifies coding, and reduces development time (Vuksanovic & Sudarevic, 2011).

Frameworks can also promote the use of best practices programming so that to overcome

security-related problems can be caused by errors in an application developed (Vuksanovic &

Sudarevic, 2011).

In bioinformatics also the adoption of the web application development is already happening

(Carta et al., 2011; Dmitriev & Rakitov, 2008; Romano et al., 2007). Web applications become

of much help for researchers especially when they are relocated from their research centres.

The access of bioinformatics applications via web browser eliminates the tiresome tasks of

installing and configuring the application to a computing device and hence gives researchers

more time to focus on finding results from biological data.

2.9 Existing Open-Source Software Tools Sanger Sequence Analysis

Base-calling, the procedure of assigning nucleobases to chromatogram peaks and is the basic

practice of performing DNA analyses. Phred was among the earliest base-calling software tools

which were reported to have less error rate than the ABI machine software (Biosystems, 2006;

Ewing & Green, 1998; Machado et al., 2011). Phred the command-based tool was the most

preferred base-calling tool by both academic and commercial DNA sequencing laboratories.

The reason behind its popularity was its high base-calling accuracy (Machado et al., 2011).

The tool was developed using open-source resources but it is not freely available (Stucky,

2012). It has two types of licenses one for commercial usage which requires purchase and the

academic license which requires registration for use and due to this, the tool is categorized

semi-proprietary (Scacchi & Jensen, 2012).

Tracy is a free open-source tool for Sanger sequence analyses (Rausch, 2018). It is a command-

based tool written in C++ on a Bioconda package. It is a pre-compiled statically linked binary

from Tracy's GitHub release page, with a singularity container setup installation file. The tool

was developed and maintained by Gear Genomics which is supported by the European

Molecular Biology Laboratory (EMBL). Similar to Phred, Tracy was also reported to perform

base-call and other tasks such as sequence alignment, assembly and deconvolution of Sanger

Chromatogram trace files (Rausch, 2018). Apart from being a powerful tool, Tracy has

limitations that it requires C++ programming skills for one to install it for the first time. Also,

17

it requires external components such as a linker for execution in the command line interface.

SangerseqR was an R implementation for performing analyses of Sanger sequencing data in R

(Hill et al., 2019). It was developed as an R package and distributed by Bioconductor on R

package repositories (Gentleman et al., 2004; Huber et al., 2015). The package contains

libraries for reading AB1 files, performing base-calls and plotting chromatograms. Among the

limitations of SangerseqR is the literacy of the R programming language. Usage of this package

and its tools requires R programming language commands to perform the above-mentioned

tasks which on the other hand may be cumbersome for users with limited or no experience with

R programming language (Leipzig, 2017).

Automated Sanger Analysis Pipeline (ASAP) is a tool for rapid analyses for Sanger sequence

data (Singh & Bhatia, 2016). It is one among other reported command-based tools for Sanger

sequence analyses. ASAP performs similar tasks to those of SangerseqR such as reading AB1

files and extracting raw data and alignment but it is automated (Singh & Bhatia, 2016). The

developer of ASAP attempted to automate some external programs EMBOSS, NCBI BLAST+,

Seqtk, Python 3.x, BioPython to perform tasks. The tool is more complex for users with little

or command-line interface interaction (Leipzig, 2017; Seemann, 2013). In addition to that the

external programs require individual installation on the host computer. If one misses installing

even one program, it may lead to malfunctioning of the tool (Seemann, 2013).

SeqTrace is a graphical user interface tool for Sanger sequence analyses which can be obtained

as free and open-source software (Stucky, 2012). It performs tasks similar to the above-listed

tools with the addition of batch processing. SeqTrace was developed with built-in dependencies

to make the application free from the installation of additional bioinformatics software

packages (Stucky, 2012). SeqTrace can identify, align, and compute consensus sequences, but

it lacks variants detection functionalities which are essential for nucleotides analyses.

Developers made attempts to compute for polymorphic and superimposed trace files to

estimate the number of insertion/deletion mutation results on the web applications tools that

include ShiftDetector, Indelligent, CHILD, and Mixed Sequence Reader (Chang et al., 2012;

Dmitriev et al., 2008; Seroussi et al., 2002; Zhidkov et al., 2011). ShiftDetector was developed

in a window-based comparison with capabilities to report cases of shift mutation and predict

the sequence using statistical methods to initiate the shift (Seroussi et al., 2002). However, its

limitations include not accounting for the multiple hypothesis tests involved in considering

18

many windows and many possible gap sizes, and also for not accounting for sequence

composition biases (Zhidkov et al., 2011). Indelligent on the other side employed dynamic

programming optimization to predict superimposed allelic sequences solely from a string of

letters representing peaks within an individual mixed trace which also reported to have

limitation in providing statistical tests (Dmitriev & Rakitov, 2008; Zhidkov et al., 2011).

CHILD was designed with statistics in mind and the implementation of FASTA alignment

algorithms to detect bundles of insertions and deletions in DNA sequence traces (Zhidkov et

al., 2011). Comparably, CHILD was more accurate and sensitive in detecting rare variants than

Indelligent and ShiftDetector, however, CHILD web application is currently unavailable

(Zhidkov et al., 2011).

The literature indicates the availability of some open-source Sanger sequence analysis tools

(Hill, 2015; Singh & Bhatia, 2016; Stucky, 2012). Most of the tools are command-based tools

Phred, SangerseqR, ASAP and some are GUI based desktop tool such as SeqTrace which

limited to Mac and Linux operating systems. Web application tools are also available including

ShiftDetector, Indelligent, and CHILD but they are limited to only a specific functionality,

polymorphism detection. In addition to that, some studies reported some tools that are open-

source but not freely available for instance Phred, also some of the tools are open-source but

are not available for example CHILD tool. It may be drawn out this summarization that most

of the existing tools for Sanger sequence analysis are command-line based, specific task-

oriented, and platform-dependent and as a result leads to limited usage (Jackson et al., 2011).

It is from the grounds comes a need to have a tool will first being free and open-source that

will have multitasked functionalities, platform interoperability and a user-friendly graphical

interface.

2.10 Usability

Usability simply refers to how easily can a specific user of a specific product can use the

product or design to accomplish intended goals effectively, efficiently and acceptably.

Usability also in the field of human-centred interaction is defined as a way to remove all

possible frustration that users user may experience when using a product or design (Wilson,

2013). On the other hand usability evaluation refers to a method used in the centered design

which is used to assess a product or design by testing it with a group representatives users

(Andrews et al., 2012; Koziokas et al., 2017). Moreover, it is a platform for users give direct

feedback and recommendation on how the feel and find about the product (Bergstrom &

19

Schall, 2014). Usability was founded as a results basic quality component which are

Learnability, Efficiency, Memorability, Errors Tolerance and Satisfaction (Nagaraj et al.,

2014). It is a good practice for the product or design be made for production to be tested by

real users and get their insights (Wilson, 2013).

2.10.1 Usability Evaluation Methods

The usability evaluation method refers techniques that are used for collecting data during test

session from users when are interacting with a product with aim achieving usability (Fernandez

et al., 2011). Studies revealed several usability methods for testing products and among them

usability testing and heuristic evaluation have been the most appropriate methods (Davis &

Jiang, 2016; Fernandez et al., 2011; Quiñones et al., 2018). Heuristic evaluation most of time

done by professionals who use the generally accepted guideline to evaluate the usability of the

product through demos and report issues. In contrast, usability testing recruits users to evaluate

particular product usability through their feedback after interacting with the product (Fernandez

et al., 2011).

20

CHAPTER THREE

MATERIALS AND METHODS

3.1 Study Area

This study took place at the molecular biology dry laboratories at the Biosciences east and

central Africa - International Livestock Research Institute (BecA-ILRI) research hub in

Nairobi, Kenya. At BecA-ILRI hub there is access to high-speed computational software tools

for research and mentorship in Bioinformatics. At BecA-ILRI hub, the work focused on study

design mainly in understanding the existing Sanger sequence analysis software tools and

determining the requirements for the development of the user-friendly open source software

tool. The development and validation of Sanger Sequence Automatic Analysis Software Tool

(SSAAT) was done at NM-AIST CoCSE laboratory.

3.2 Scope of the Study

The study aimed at development of a software tool for DNA analyses at the nucleotide level.

The aim of choosing this scope was to build a software tool which could perform basic analyses

of which later could be scaled up for more advanced tasks.

3.3 Methodology

The study was done through Agile methodology. This kind of approach was selected in order

to enable users interaction and fit their requirements during development (Bisandu, 2019;

Martin & Euchner, 2012). The Agile methodology elevates continuous iteration of software

development and testing throughout the project life cycle (Bisandu, 2019). The development

and testing activities were concurrently conducted to meet user requirements (Dorst, 2011).

This study applied Lean software development life cycle which is an iterative Agile

methodology. The Lean software development utilizes elements of manufacturing processes

such as eliminating waste, amplify learning, late decisions, and reduced delivery time (Ebert et

al., 2012; Pernstål et al., 2013; Poppendieck & Cusumano, 2012). The methodology focuses

on delivering value to the users through effective value stream mapping. Moreover, the

methodology is evolving, flexible and with no rigid guidelines or rules (Poppendieck &

Cusumano, 2012).

21

The development of the software tool started with concept development as the initial stage of

process where scope and tasks prioritization are defined. In this phase project goals and

outcomes were outlined and plans to accomplish them were set through understanding of the

main problem and getting a big picture of the solution. This involved seeking advice from

experts to find out more about the area of concern through observing, engaging end-users and

understanding of the existing issues.

Information gathered during the initial stage, was being processed for further action during

inception stage. Analyses and synthesis of observations was done in order to determine the core

problems. The identification and definition of the problem was done in a human-centered

manner so as to capture user requirements at a wide angle. It was found from the existing

software tools that there was a need to have a user-friendly software tool that would have a

graphical user interface, with cross-platform capabilities to work in most the operating

environments.

3.4 Requirement Engineering

Requirements engineering is a field of expertise that is applicable in various situations and

processes (Curcio et al., 2018; Sillitti & Succi, 2005). It is useful even in agile software

development and can help to provide more substance to the Lean development framework

(Curcio et al., 2018).

In Lean, the software backlog is a dynamic set of requirements, with the software stakeholders

responsible for its content and management. This should be done continuously and in

collaboration with both stakeholders and the developer so as to meet expected results (Curcio

et al., 2018).

3.4.1 Requirement’s Specification

Formal software requirement models are being produced during this activity. Requirement’s

specification refers to the detailed description of a software system to be developed. This

involves capturing and maintaining the systems’ functional and non-functional requirements.

The functional requirements are the one which describes what services the system will provide.

On the other hand, non-function requirements are the one which specifies criteria that can be

used to judge operation of the system instead of specific behavior. The non-functional

requirements specify the system’s quality characteristics or quality attributes.

22

Table 1: Functional Requirements

Functional

Requirement

ID

Functional Requirements Descriptions

 FR001 Upload DNA sequence

data files

The system should enable users to upload the

DNA sequence (AB1 files) for the DNA

sequence analysis.

 FR002 Perform Base-calling The system will automatically perform base-

calling by assigning nucleotides of the

uploaded DNA sequence data to

chromatogram peaks.

 FR003 Display chromatogram The system should enable users to view the

chromatogram.

 FR004 Chromatogram settings The system should provide chromatogram

option for the user to set how to view the

chromatogram.

 FR005 Convert AB1 file to

FASTA file format

The system should automatically convert AB1

to FASTA file format of the DNA sequence

file.

 FR006 Extract DNA sequence file

details

The system should extract DNA sequence

details from the uploaded AB1 files.

 FR007 Sequence alignment The system should perform DNA sequence

alignments and display results.

 FR008 Polymorphism detection The system should perform SNP and InDel

polymorphism detection of the DNA sequence

and display results.

 FR009 Report generation The system should be able to generate report

and enable users to select and download

results.

 FR010 Operational

manual/instruction

The system should provide to users the system

operating manual/instructions.

23

Table 2: Non-Functional Requirements

Non-Functional

Requirement ID

Non-Functional

Requirements
Descriptions

NFR001 Usability The system should be easy to use, effective,

efficient and satisfactory in achieving

quantified objectives.

NFR002 Reliability The system should have minimum downtime

error during operation.

NFR003 Performance The system should have high throughput with

short response time.

NFR004 Availability System should be available with high mission

capable rate.

3.5 Software Tool Design

The designing of SSAAT was done at BecA-ILRI hub by five participants with different

backgrounds as shown in the Table 3 below. All participants were involved in the designing of

the developed tool under the supervision of the senior scientist. The molecular biologist and

the bioinformaticians since were the main stakeholders of the tool, hence also had an important

role to check if the software requirements were met through the testing of the developed

prototype. Moreover, the software engineer had three roles to design, develop and to test the

tool prototype.

Table 3: Sanger Sequence Automatic Analysis Software Tool Designing Participants

No. Field of expertise
Level of

expertise

Degree

level
Roles

1 Bioinformatics Senior scientist PhD Supervising

1 Bioinformatics Scientist Masters Designing and testing

2 Molecular biologist Scientist Masters Designing and testing

1 Software

engineering

Software engineer Masters’

student

Designing, developing and

testing

3.5.1 Design Concept

Sanger Sequence Automatic Analysis Software Tool was designed in an Agile way, whereby

the existing software tools were identified and explored using empathic approach through user

verification. It was found that the existing Sanger sequence software tools had lack of user

24

interface which also led to difficulties of use (Feizi & Wong, 2012). Also the software tools

had difficult installation, in order to the software tools could require a command-line literacy

(Feizi & Wong, 2012). Moreover, the existing free open-source software tools had lacked the

cross-platform interoperability capabilities and hence worked only to selected operating

systems.

From the above mentioned it was suggested that the new software tool to be developed as a

web application so as to address the challenges previous faced in the existing software tools.

The web application would have a graphical user interface that can be accessed by users

through any device that have web browser. This would have solved the challenges for graphical

user interface, installation of software to user’s devices and also interoperability since it is

accessed through a web browser (Burzacca & Paternò, 2013; Nguyen et al., 2016).

During the tool design wireframe also known as screen blueprint was used to give a visual

guide that represents the skeletal framework of a web application to be developed. Figure 5

depicts the design of the proposed DNA analysis tool to be developed through a wireframe

diagram.

The wireframe has six components as it represented through labels from 1 to 6 in Fig. 5. Label

1 represents a sidebar that holds tool settings component which offers options for user to upload

data chromatogram viewer, and sequence alignment settings. Label 2 represents DNA sequence

component where users will be able to get the DNA sequence details. Additionally, the DNA

sequence alignment and polymorphism detection components were represented by label 3 and

4 respectively. Lastly, report generation component was represented by label 5 while the tab 6

represented the chromatogram viewer. The prototype of the tool was developed as it.

25

Figure 5: The SSAAT Design Wireframe

3.5.2 Unified Modeling Language (UML) Use-Case Diagram

Use case diagrams are the Unified Modeling Language (UML)’s behavior high level diagrams

that is comprised of Systems, Actors, Use Cases, and Relationships. They are simple models

used to schematically document the functions of a system from a user’s perspective and to

represent the interrelations of the functions of a system. Use case diagrams were used to

document the system’s behavior in a high abstract level for the purpose of simplifying the

illustration of the proposed software tool to the stake holder. The UML Use case diagrams is

presented in Fig. 6 where the rectangle helps define the scope of this system and anything

within this rectangle happens within the software tool while on the other side anything outside

this rectangle does not happen in the tool. The next element is an actor, which is depicted by

this stick figure. An actor is going to be someone or something that uses our system to achieve

a goal. That could be a person, an organization, another system, or an external device. In this

software tool the main stake holder is the researcher and hence becomes an actor to the system.

Lastly, a Use Case is depicted with this oval shape and it represents an action that accomplishes

some sort of task within the system. They are placed within the rectangle because they’re

1

2 3 5

4

6

26

actions that occur within the software tool SSAAT.

3.5.3 Unified Modeling Language Sequence Diagram

Sequence diagrams are a type of UML diagram that show how objects in a system or classes

within code interact with each other. Particularly these diagrams show interactions in the order

they take place, in other words, they show the sequence of events. Sequence diagrams are

primarily used by developers and business professionals to document processes or understand

the requirements of a new software. In this study, sequence diagrams were used to emphasizes

how objects communicate and the time ordering of the messages between objects. The

sequence diagram of SSAAT is illustrated in Fig. 7, whereby the objects that participated are

placed on top. The objects that initiate the interaction are at the left, and place increasingly

more subordinate objects to the right. So basically, this reflects the way the events will flow

for the majority of the interactions in the system.

27

Figure 6: UML Use Case Diagram for Sanger Sequence Automatic Analysis Software

Tool

28

Figure 7: UML Sequence Diagram for Sanger Sequence Automatic Analysis Software

Tool

3.5.4 Architectural Design

The SSAAT was developed based on the client-server architecture. This is a distributed

computing architecture that offers the server which delivers and manages most of the resources

and services to be consumed by the user known as client (Oluwatosin, 2014). Mostly, clients

and servers communicate over a computer network on separate hardware, but in some cases

both of them may reside in the same system (Reese, 2000). The server host runs one or more

service applications which share their resources with the clients. On the other hand, a client

does not share any of its resources, but requests service from a server. Clients are the

communication session’s initiator with servers since they do request service and wait for

response from the server. The client side is the part that enables system interaction with users

through the graphical user interface which may be accessed through web browser. Client side

of SSAAT provides manipulation mechanism of the input and output of data for analysis.

29

Figure 8: Sanger Sequence Automatic Analysis Software Tool Architectural Design

3.5.5 Data Flow Diagram

Data flow diagrams (DFD) are graphical representation of the flow of data through an

information system. Data flow diagrams tell how the data travels within an application so

basically, during software development it is most important to understand how your data will

travel from one module to another within your application. Figure 9 illustrates the DFD as data

flows from the AB1 file reader where the DNA files is uploaded, then the processed data flows

to the base-calling algorithm which here it acts as the central processing unit of the tool. All

other processes depend on the base-calling process to assign the nucleotides in a well-defined

order for them to perform respective tasks such as the visualization of chromatogram, DNA

sequence details, sequence alignment and the rest. Data flow diagrams main purpose is to

ensure that the software is well organized as the same time acts as a checklist to confirm that

the software will have all the specifications are met through a visual aid.

30

Figure 9: Data Flow Diagram

3.6 Development

The development of SSAAT required an approach that could facilitate making of a tangible

software tool out of design concept at early stages to be tested by users. Testing of the software

tool at early stage provides a room to refine and validate software designs that will lead to a

right product.

3.6.1 Prototype Development

Development in software engineering refers to planned and structured activities performed to

transform users’ requirements into software products. This involves capturing user

requirements, designing, development by coding and maintaining the source code of a

functional software. The development approach used in this study was Lean software

development life cycle. Evolution prototyping was used so as to eliminate waste and facilitate

quick development (Poppendieck & Cusumano, 2012). The scaled down version also known

as prototype of the software tools were developed so that they could be used to investigate the

problem solutions generated in the previous stage. This was an experimental phase, and the

aim was to identify the best possible solution for each of the problems identified during the

first three stages.

31

Figure 10: Prototyping Software Development Life Cycle

It is through prototype development that problem solutions are implemented and examined for

approval either accepted, improved and re-examined, or rejected on the basis of the users’

experiences (Hillgren et al., 2011). At the end of this stage, the better idea of the constraints

inherent to the software tool and the problems that are present, and were clearly observed

(Hillgren et al., 2011).

In this study the web application software tool prototype was developed using the R-Shiny

framework. The prototype was refined iteratively for improvement. The prototype was then

evaluated and improved performance and design in every stage of iteration until the final

prototype was obtained. Mock-ups were used to imitate the feel of the design during

development of the prototype as it can be illustrated on Fig.11.

32

Figure 11: Sanger Sequence Automatic Analysis Tool Mockup

(i) Shiny Web Application Framework

In this study a web application for Sanger sequence analysis was developed using Shiny web

framework. The R is a programming language and free software environment for statistical

computing and graphics supported by the R Foundation for Statistical Computing (R

Development Core Team, 2011). The R language is widely used among statisticians and data

miners for developing statistical software and data analysis (Chambers, 2008). R is well known

for solving analytic challenges (Chambers, 2008).

Recently, most of web application development projects employs the use framework for

development rather than developing from scratch (Kumar & Kumar, 2019). The reason is

because frameworks have standard reusable components and API that can implemented to

develop new web application (Vuksanovic & Sudarevic, 2011). This ease testing activities and

also reduces time for development (Kumar & Kumar, 2019; Vuksanovic & Sudarevic, 2011).

Shiny web application framework was selected for the development of Sanger sequence

analysis application because of its capability for developing interactive web applications for

data analysis and visualization (Beeley, 2013). The framework based on R programming

language, HTML, CSS and also supports JavaScript scripts. Once a Shiny application is built

it becomes an R interface that anything could be done with R, could be done also in the

33

application. Moreover, Shiny supports prototyping which was more suitable for the

development of Sanger sequence analysis software tool since prototyping methodology was

used.

(ii) Hyper Text Markup Language (HTML) and Cascading Style Sheet (CSS)

Development of the web application page used Hyper Text Markup Language (HTML) and

Cascading Style Sheet (CSS) in creating web pages (Gabarro, 2015). Hyper Text Markup

Language is used in web technology for access and display web pages in the web browser. It

describes the structure and appearance of the web page. The HTML works together with the

CSS which is used to describing the presentation of the web page. The used HTML and CSS

for development of graphical user interface by creating web pages to interface the application

for easy user interaction.

(iii) RStudio

RStudio is an open source Integrated Development Environment (IDE) for R programming

language (Allaire, 2015). It provides an environment with built-in libraries and interpreter to

write, run and test R programs and applications. In this study RStudio was used for write R

codes, running and testing the developed web application for Sanger sequence analysis

(Allaire, 2015).

(iv) Other Requirements

• Internet connection

• Web application server

• Sanger sequence DNA files.

3.6.2 Assumptions

The development of the Sanger sequence analysis software tool was based on several

assumptions for the software and hardware features. During the development of the web

applications the following were assumptions about the client and server environments:

(i) The server machine system that host the server application will have the required

resources such as Linux operating system, 8 GB memory, 120 GB storage space, 3.0

GHz central processing unit (CPU) and above to run the web application.

34

(ii) A web browser is available in the client computer where the web application will run.

(iii) Both the client and server machine will have TCP/IP network connectivity for

communication in order to run the web application.

(iv) Users have good knowledge of computer and able to use web browser to access

information from the world wide web through internet connection.

3.6.3 Software Tool Components

The development of SSAAT web application was done component wise, whereby each

component was developed individually and later combined to work together. Figure 12 below

shows the building components of SSAAT starting with the first on the AB1 file reader up to

the last, the report generator.

Figure 12: Sanger Sequence Automatic Analysis Software Tool Components Block

Diagram

35

(i) AB1 Files Reader

The AB1 file are one that stores the Sanger sequence DNA as a raw data. In order to extract

the raw DNA data, one requires and software tool to read the AB1 file. The AB1 file reader for

SSAAT was developed by implementing an R package SangerseqR (Hill et al., 2019) found at

Bioconductor repository (Huber et al., 2015). The package provides libraries to read AB1 files

and extracting the raw Sanger sequence DNA data for further analyses such as base-calling and

others. The AB1 reader was with a graphical user interface for file browse and upload field.

This field was developed so as to enable user to easily select and upload the AB1 file for

analyses.

(ii) Base-Caller

Base calling is the process of decoding the output signals of the Sanger sequence reactions into

sequence reads (Sheikh & Erlich, 2012). Base-caller program for SSAAT was developed by

implementing SangerseqR base-calling libraries (Hill et al., 2019). The developed base-caller

used Phred base-calling quality score the one found at the widely used base-calling software

Phred (Brent-Ewing & Green, 1998). A Phred quality score is a measure of the quality of the

identification of the nucleotides generated by automated DNA sequencing (Roberts, 2011).

Phred quality score Q are defined as a property which is logarithmically related to the base-

calling error probabilities P.

 𝑄 = −10𝑙𝑜𝑔10𝑃

OR

𝑃 = 10
−𝑄

10

Where P = Base-calling error probabilities and Q = Phred quality score in Decibel (dB).

Table 4 below shows the relationship between Phred quality score and base-call accuracy. It

can be clearly observed that, for instance if the base-caller program assigns a quality score of

40 to a base, the chances that this base is called incorrectly are 1 in 10 000 which is equivalent

to 99.99% accuracy. The quality scores are assigned to each nucleotide base call in automated

sequencer traces (Roberts, 2011).

36

Table 4: Phred Quality Score and Base-Call Accuracy Relationship

Phred Quality Score
Probability of incorrect

base call
Base call accuracy

60 1 in 1000000 99.9999%

50 1 in 100000 99.999%

40 1 in 10000 99.99%

30 1 in 1000 99.9%

20 1 in 100 99%

10 1 in 10 90%

(iii) Deoxyribonucleic Acid Sequence Extractor

Deoxyribonucleic Acid sequence refers to the order of nucleotides of a particular DNA sample.

The DNA sequence extractor of SSAAT was developed as an R program to fetch data from

base-caller program. Data that could be fetched by DNA sequence extractor program includes

DNA sequence, AB1 file details (Schema, 2009) and base-call quality score of data.

(iv) Chromatogram Viewer

Chromatogram viewer was developed for visualization of the chromatogram trace file

generated after base-calling. The chromatogram trace file contains visible records in form

graphs that shows the result of separating nucleotides mixture. The chromatogram viewer was

developed to provide an interface for users to visualize and inspect the DNA sequence

chromatograms. Moreover, chromatogram viewer was developed with a built-in single

nucleotide polymorphism (SNP) detector and highlighter.

(v) Deoxyribonucleic Acid Sequence Aligner

Deoxyribonucleic Acid sequence alignment refers technique of positioning the sequences of

DNA in order to identify areas of resemblance that may be an outcome of functional, structural,

or evolutionary relationships between the sequences (Greene, 2016). The SSAAT sequence

aligner was developed by implementing a Biostring (Pagès et al., 2017) package from

Bioconductor repository (Huber et al., 2015). Biostring contains libraries for performing DNA

sequence alignment with five different alignment setting local, global, overlap, global-local

and local-global alignments which were all implemented. Also, the DNA sequence aligner was

developed with a user interface field for users to upload a reference sequence for alignment

37

with DNA sample. The field developed in way accept .txt or. Fast-All File Format (FASTA)

file format since most of reference sequence are obtained in the format mentioned before.

(vi) Polymorphism Detector

The DNA polymorphism refers to differences of sequence as compared to a standard reference

that is present in at least 1–2% of a population. The SSAAT polymorphism detector was

developed to detect polymorphism of DNA sample by implementing Smith-Waterman

algorithm from a . The algorithm uses dynamic programming to align two sequences in a more

quantitative way by giving scores for matches and mismatches through scoring matrices.

(vii) Report Generator

Sanger Sequence Automatic Analysis Software Tool was developed with a program for report

generation. The report generator was developed to capture analysis information including the

DNA sequence details, chromatogram trace file, sequence alignment and polymorphism

details. The programs provide PDF and Microsoft Word file format options for users to

download the generated report.

3.7 Testing

The SSAAT web application was tested during development using unit testing, integration

testing, system testing and usability testing to validate the developed web application. Unit

testing was done as the first level of software testing where individual components of a software

tool were tested to check if components developed meets the requirements.

Integrated testing was done after combining all the individual software components of the

software tool. The bottom-up approach was used to perform integration testing where bottom

level units are tested first and upper-level units’ step by step after that. In this task gray-box

testing method was applied to test the interfaces of the integrated components.

System testing, performance and compatibility testing was done at the end of development

whereby the web application was tested at both at the localhost and remote the Shiny web

server host at the NM-AIST web server. Google PageSpeed Insights and Apache JMeter were

used to test device compatibility and performance of execution at the real working environment

(Apache, 2014; Google, 2015).

38

3.8 Validation of SSAAT

Validation of the tool was done through the usability testing which the specific object number

three of this study. The usability testing comprised of five main activities which are planning

the session, recruiting participants, designing the tasks, running the session and analyzing the

insights.The usability testing was conducted by molecular biologist (masters and PhD students)

from NM-AIST and using the latest prototype SSAAT a web application hosted at the NM-

AIST server. The session was done remotely through Google Meet teleconferencing platform

whereby both the moderator and participants were present online during the session. The study

conducted remotely to due to the geographical locations between the moderator and

participants. The moderator was responsible for starting the session and providing the test cases

and tasks instruction. Also, apart from that the moderator was supposed to observe each

participant navigation choices, number of tasks completed correctly, number of incomplete

tasks, and collect feedbacks and comments while participant was doing usability test.

3.8.1 Usability Testing Methodology

In this study both qualitative and quantitative methods were used to capture user interactivity

to the web application. Qualitative data was collected through Likert scale questionnaire

whereby quantitative data such as total users who were able to complete all the tasks, total

complete tasks, complete task time and others were collected as questionnaires. The testing

session was design in way that each individual participant performs all the tasks and summative

assessment was done with an intension to examine and evaluate participants insights. The study

aimed at capturing the indicating factors to usability such as learnability, efficiency, usefulness

and satisfaction through the test session conducted.

3.8.2 Participants and Durations

Total of fifteen (15) participants with age 21 years old and above participated the usability test

sessions this is based on previous studies on usability that 5-20 participants is valid for usability

testing (Macefield, 2009). Among the participants eight of them were females and seven males.

First three participants scheduled on first day were regarded as pilot for the next sessions. The

testing sessions were conducted for five day starting from 26th October 2020 to 30th October

2020 with three participants per each day. The duration for each session was 60 minutes as and

there was break period for 60 minutes every after one session ends. The session time is based

39

on previous study on usability that suggest 60-90 minutes is valid for test sessions (Ju & Onse,

2005).

During the testing sessions the moderator provided brief overview about the test session and

requested the participants to fill in a pre-test questionnaire so that to collect the general data.

Next participants read the task instructions and begins to perform the tasks on the tool using

through the web browser. As soon as participants completes all the tasks, the moderator

requested the participants to rate the web application (SSAAT) using a Likert scale

questionnaire. Lastly, the post-test session follows to find out more information about the

overall web application. The following are some of the questions which were asked during the

post-test session.

(i) What did the participants like most about the web application?

(ii) What is the challenging part of the web application?

(iii) What should be done to improve?

3.8.3 Tasks

From the table below are the tasks that were designed by the moderator and supplied to the test

participants to attempted completion during the usability testing sessions. Each participant was

required to attempt the tasks and the moderator was observing, recording the time of

completion and other participant’s behavior while attempting the task during the session. Table

5 depict the usability testing task with a corresponding allocated time.

40

Table 5: Task for Usability Testing

Tasks Estimated Time (min) / baseline

Identify the use the web application. 5 / 3

File upload, view the sequence quality and

download the extracted sequence as FASTA file.

5 / 3

Navigate to Chromatogram Viewer, trim the

5’end 60 base and trim 3’ end 100 base the

download the chromatogram as PDF file

10 /7

Upload a reference sequence and calculate the

global/local sequence alignment with the

previous uploaded file as a primary sequence.

10 / 7

Generate a report with sequence detail,

chromatogram quality score plot and sequence

alignment results

5 / 3

41

CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Developed Tool

Studies indicate there are few free open source software tools that deal with analysis of Sanger

sequence DNA analysis. Among the few available tools most are command-line based tools,

some were desktop stand-alone graphical user interface application while others are web-based

applications.

The command-line based tools subject biologists to steep learning curves since they require

assistance from computer literate personnel since the nature of interaction of the software

tools is based on computer commands (Feizi, 2013; Feizi & Wong, 2012). Tools that had

graphical user interface were categorized as desktop stand-alone and web-based application.

The tools had a less learning curve since any user can interact with them easily through

graphics (Strecker & Memon, 2011).

However, among the tools with graphical user interface there were some limitations such as

interoperability issues for desktop stand-alone tools and also lack integrated functionalities

across most of the available tools. Studies revealed that some of stand-alone tools only operates

in a specifying operating system that may require user to have similar computing environment

to install and use the tool. On the other hand, the analysis shows that most of the available tools

lacks integrated functionalities since they were built for specific task only and this requires

users to more application install to accomplish their works. Table 6 shows summarize finding

results for the Sanger sequence analysis existing tools.

4.2 Developed Tool Results

Sanger sequence analysis tool was successfully developed in R programming language,

whereby Shiny (Ishimaru et al., 2014) web application framework was used to build a graphical

user interface in R. SSAAT prototype is hosted on the on the NM-AIST web server and can be

accessed through the link http://41.59.85.220/ssaat/. The development of SSAAT on a web

application enhances users with limited programming skills to analyze and visualize their data

and different users can access the tool concurrently. Users distributed remotely were able

access the tool via the Internet network using the web link provided.

http://41.59.85.220/ssaat/

42

Table 6: Finding Results for the Sanger Sequence Analysis Existing Tools

Tool
Programming

Language
Type Availability

Base-

calling

Sequence

alignment

Chromatogram

Viewer

Sequence

Quality

Polymorphism

Detection

Report

generation

SangerSeqR R Command-

Line

Free,

available

Yes Yes No No No No

Tracy C++ Command-

Line

Free,

available

Yes Yes No No Yes No

Phred Perl Command-

Line

Not free,

available

Yes No No Yes No No

ASAP Python Command-

Line

Free,

available

No Yes No No No No

CHILD Perl Web

application

Free,

 Not

available

No No No No Yes Yes

seqTrace Python Desktop Free,

available

Yes No Yes Yes No No

Shiftdetector Perl Web

application

Free,

available

No No No No Yes No

Indelligent Perl Web

application

Free,

available

No No No No Yes No

43

Figure 13: Sanger Sequence Automatic Analysis Tool (SSAAT) Main Page

4.3 Features of the Developed Tool

The SSAAT was developed with six major features one being capabilities to read Applied

Biosystems AB1 file format and extract the raw DNA data. Additionally, the tool was capable

to perform base-calling, display chromatogram with polymorphism detection, perform

sequence alignment, and generate analysis report.

4.3.1 Reading AB1 Files

Sanger sequence analysis tool was able to read AB1 files, the DNA file format are ones

processed by Applied Biosystems DNA sequencer machine (Schema, 2009). The AB1 files

were uploaded through the graphical upload field in order for the files to be read by the SSAAT

AB1 program (Fig.14). The tool was able to access the binary raw data and extract the data.

The extracted data was later used for analyses such as displaying the base-call, plotting

chromatogram traces, DNA sequence extraction in FASTA file format, sequence alignment

and for polymorphism analyses. Moreover, SSAAT was developed with a built-in example of

AB1 file for demonstration purposes. Users may learn on how to use the tool by checking in

the checkbox to load the example datasets. The SSAAT was able to automatically read the

example AB1 file for further analyses tasks.

44

Figure 14: Applied Biosystems File Format File Upload Field Interface

4.3.2 Base Calling

Sanger sequence analysis tool was able perform base-call and extract Sanger DNA sequence

and details of the AB1 file. Figure 15 below shows the DNA sequence extracted from the AB1

file with and SSAAT provided an option below for download as FASTA format.

Figure 15: Deoxyribonucleic Acid Sequence Extract by SSAAT

Moreover, SSAAT was able to capture the Phred quality score for AB1 file and plot histogram

and cumulative histogram to show the relationship between the nucleotides and Phred quality

score. As previously discussed in Chapter Three, Phred quality scores are important to be

checked for every processed AB1 files for the purpose of base-call verification (Roberts, 2011).

Figure 16 shows how SSAAT was able to capture the Phred quality scores and plot a histogram

with a relationship to the samples (nucleotides) bases.

45

Figure 16: Chromatogram File Quality Score

4.3.3 Chromatogram Viewer

Sanger sequence analysis tool was developed with a chromatogram viewer with the aim of

visualizing the chromatogram trace files. The visualization takes as soon as base calling process

completes and the nucleotides are assigned to the chromatogram peaks. The user has the ability

to change the default settings. Next-Gen option provided by the chromatogram viewer. Below

are the chromatogram described in detail.

4.3.4 Chromatogram Width

This setting enables the user to set the number of bases per row on the chromatogram viewer.

Sanger Sequence Automatic Analysis Tool provides a slide which default is being set to 100

bases per row, the user is able to slide above to 400 base per row or below to 10 base per row

in order to set a desirable number of bases for visualization. Figure 17 and Fig. 18 shows how

the can be visualized when the chromatogram width is set to accommodate 100 and 400 base

per row respectively. It was found that chromatogram traces tend to widen out and hence

clearly visible when the number of bases per is decreased. On the other hand, increasing the

number base per row narrowed the traces which resulted to unclear chromatogram for visual

investigation.

46

Figure 17: 100 Base Per Line Chromatogram Setting

Figure 18: 300 Base per Line Chromatogram Setting

4.3.5 Trimming

Applied Biosystems file format (AB1) trace files usually contain noisy signal output located at

the 5 prime region which is beginning and at the 3 prime region which is the end of trace file.

SSAAT was developed with trimming setting option to trim the end of the trace files so that to

eliminate noisy part of the trace file. Sanger sequence analysis tool trimming came of two

modes one being a manual whereby user specify the trimming regions, while the other one was

automatically trimming the noisy region. When applied the trimming setting was successfully

executed and noisy region of chromatogram were removed.

4.3.6 View Trimmed Region

Sanger sequence analysis tool was able to provide an option setting to choose whether to

display the trimmed region of the trace file or not to display. This setting was important for the

user to visualize the regions on the chromatogram they are trimming so that they could trim the

unwanted part only. Most cases without visualizing the region to be trimmed one could end

trimming the region of interest in the chromatogram trace file. Figure 19 shows how SSAAT

displays trimmed region of the chromatogram trace file by highlighting the removed bases with

crossed red lines in the chromatogram viewer.

47

Figure 19: Automatic Trimming Option and a Display Removed Bases

4.3.7 Sequence Alignment

Sequence alignment is the process of arranging and comparing DNA sequences to identify

regions of similarity that may be a result of functional, structural, or evolutionary relationships

between the sequences. Usually, this process involves two for pairwise alignment and more

than two DNA sequences for multiple sequence alignment.

Sanger sequence analysis tool was designed to perform pairwise sequence alignment whereby

a user is required to upload the Sanger DNA sequences and a reference sequence file in FASTA

format. SSAAT provides options for the user choose the type of sequence alignment for the

uploaded Sanger sequence data. The following are the alignment method options provided by

SSAAT.

4.3.8 Local Alignment

This method of sequence alignment implements the Smith-Waterman algorithm useful for

unrelated sequences that are suspected to contain regions of resemblance sequence motifs

within the context of larger sequence.

4.3.9 Global Alignment

This method of alignment aligns every residue in every sequence, and it most useful when the

sequences in the query set are similar and of roughly equal size. It implements the Needleman–

Wunsch algorithm.

4.3.10 Glocal Alignment

Glocal stands for Global-local which is a hybrid type of sequence alignment which combines

the use of global and local alignments. Glocal alignment performs searches for the best

48

probable biased alignment among the sequences.

4.3.11 Polymorphism Detection

DNA polymorphism refers to the difference sequences of among an individual, group or

population (Teama, 2018a). At nucleotide level the types of polymorphism include single

nucleotide polymorphism (SNPs), insertion/deletion (InDels), variable number of tandem

repeats, structural alterations and copy number variations. In this study SSAAT was designed

to detect SNPs and InDels types of Sanger sequence DNA polymorphism.

Single nucleotide polymorphism are “high-density natural sequence variations in human

genome” formed when errors occur substitution, insertion and deletion (Xu et al., 2009 ;Teama,

2018b). Single nucleotide polymorphism are outstanding sources of variation in human

genome and serve as first-class genetic markers. InDels are type of DNA variation in which a

particular nucleotide sequence of various lengths ranging from one to several hundred base

pairs is inserted or deleted. Mostly, InDels are widely spread across the genome (Boltz et al.,

2013).

Sanger sequence analysis tool was able to detect SNPs of through the chromatogram viewer

and highlight the polymorphic region in the chromatogram. Figure 20 below shows SSAAT

detected and highlights the SNPs of the analyzed chromatogram traces files. The observed

SNPs from the chromatogram viewer can be verified through sequence alignment at the

polymorphism detection section of SSAAT. InDels in SSAAT are being detected through

Smith-Waterman algorithm. Sequences to be tested for polymorphism is being aligned with a

reference sequence and SSAAT computes the InDels.

Figure 20: Single Nucleotide Polymorphism (SNP) Highlighted in Chromatogram Viewer

4.3.12 Report Generation

Sanger sequence analysis tool was able to provide report of the analysis done for a particular

Sanger DNA sequence file. It was able to provide a report on a sequence alignment information

49

such as the DNA sequence used, reference DNA sequence, length of sequences, gap and extend

penalty used, identity and similarities in percentage, gaps found and the alignment scores.

Moreover the DNA sequence extracted with its respective chromatogram qualities scores plots

may also be generated by SSAAT as shown in Fig. 21 below. The report generation page

provides options for download in three different file formats PDF, Word and HTML.

Figure 21: Report Generation

4.4 Validation Results

Sanger sequence analysis tool was developed with user center in mind. It has an easy-to-use

web graphical user interface through which users may have easy interactions with the system.

4.4.1 Unit Testing Results

The unit test was conducted during the development stage where different test cases were

designed and implemented. The purpose of this test was to validate that each unit of the

software performs as designed. The good the unit tests are written the better the results of

promptly caught defects introduced due to the change. Also, making code less interdependent

during unit testing, makes the unintended impact of changes to any code is less. Table 7 shows

the unit test cases conducted.

Table 7: Sanger Sequence Analysis Tool Unit Test Cases

Features Test Cases Status

AB1 file upload Check if AB1 files can be uploaded to the web OK

50

 application

AB1 file read

Check if AB1 file can be read or not OK

Base-call

Check if base-caller program can assign

nucleotides to chromatogram peaks or not

OK

DNA sequence

extraction

Check if the DNA extractor can extract the

DNA sequence details from base-caller or not

OK

Chromatogram view

Check if chromatogram viewer can display

the DNA traces or not

OK

Chromatogram viewer Check if the chromatogram viewer are

working or not

OK

Sequence alignment

Check if the sequence aligner program can

perform the DNA sequence alignment or not

OK

Sequence alignment Check if the sequence aligner are working or

not

OK

Polymorphism detection

Check if polymorphism detector is working or

not

OK

Report generation

Check if the report generator is working or not OK

User Manual page

Check if the user manual guide page is

displayed or not

OK

From Table 7 above it is indicated that test cases were written to focus on the tests that impact

the behavior of the system. The unit test was conducted to validate the components’ behaviors

using test data that is with different qualities ranging from high to low. Unit test was important

in this study so as to reduce cost of fixing defect codes at component level rather in the system

level.

4.4.2 Integration Testing Results

Integration testing was conducted with the aim of exposing faults in the interaction between

integrated units. The test was intended for verifying the smallest modules validated in the unit

testing stage above can work together properly and verify if they are in line with requirements

51

specified in the software design (Grechanik & Devanla, 2016). All functional units were tested

and integrated to verify if they can work together properly. During development base-call

module being the heart of the tool was integrated with other modules and tested to verify if

they were working properly. This was done so as to evaluate the compliance of each module

with specified functional requirements (Grechanik & Devanla, 2016).

4.4.3 System Testing Results

System testing in this study was conducted to check the complete working web application.

This test was done after the unit and integration test was conducted so as to validate the systems

functional requirements as shown in Table 8. All the functional requirement passed the system

testing and hence the developed tool was able to meet the expected requirements.

52

Table 8: System Testing Results

Function Requirement Test Cases Status

Upload DNA sequence data files Check if AB1 files can be browsed from

local machine and uploaded to the web

application

Pass

Perform Base-calling Check if base-caller program can assign

nucleotides to chromatogram peaks or not

Pass

DNA sequence extraction

Check if the DNA extractor can extract the

DNA sequence details from base-caller or

not

Pass

Display chromatogram Check if chromatogram viewer can display

the DNA traces or not

Pass

Chromatogram settings Check if the chromatogram viewer are

working or not

Pass

Convert AB1 file to FASTA

format

Check if the tool can convert AB1 file to

FASTA format or not

Pass

Extract DNA sequence file

details

Check if the system can extract DNA

sequence file details or not

Pass

Sequence alignment

Check if the sequence aligner program can

perform the DNA sequence alignment or

not

Pass

Polymorphism detection

Check if polymorphism detector is

working or not

Pass

Report generation

Check if the report generator is working or

not

Pass

Operational manual/instruction Check if the user manual guide page is

provided or not

Pass

4.4.3 System Performance Testing Results

The system performance testing was done to measure the remote connectivity between the

client-side and the hosting servers. The test was done by auditing the performance factors such

as first content paint, speed index, largest content paint, time to interactive, total blocking time

and cumulative layout shift (Google, 2015) as presented in Table 9. The performance testing

53

metric was measured in milliseconds. Google PageSpeed Insight (Google, 2015) testing

platform was used to test SSAAT performance and the SSAAT was able to scored 88% in

desktop browsing and 64% in mobile device browsing overall performance score. The results

from Apache JMeter (Apache, 2014) SSAAT had almost similar performance to those from

Google PageSpeed Insight with a score of 86% for desktop browsing and 66% for mobile

browsing. Figure 22 shows the SSAAT performance results for a desktop browsing

environment.

Table 9: Performance Testing Audits

Web application performance audit Weight

First content paint 15%

Speed index 15%

Largest content paint 25%

Time to interactive 15%

Total blocking time 25%

Cumulative layout shift 5%

Figure 22: Sanger Sequence Analysis Tool Performance Testing for Desktop Device

4.4.4 Compatibility Testing Results

Compatibility test result shows that SSAAT web application is 85% compatible with computers

both desktops and laptops while scores 66% compatibility with mobile devices. The result

suggests best user experience in computers more than in mobile devices. This may be due to

high screen resolution in loading web pages by computers as compared to mobile devices.

Figure 23 shows the page load speed results of SSAAT across five common web browsers

54

Mozilla Firefox, Google Chrome, Microsoft Edge, Safari and Internet explorer. The test results

obtained are for both desktop computer and mobile devices such as phablet and mobile phones.

Figure 23: Sanger Sequence Analysis Tool Compatibility Testing Results

4.4.4 Usability Testing Results

(i) Task Completion Rate

All participants successfully completed Task 1 (Identify the use the web application.) marking

100% completion rate. On the other hand, Task 2 (File upload, view the sequence quality and

download the extracted sequence as FASTA file.) was completed by 87% of total participants.

Among the long duration tasks, Task 3 (Navigate to Chromatogram Viewer, trim the 5’end 60

base and trim 3’ end 100 base the download the chromatogram as PDF file) scored 73%

completion rate while Task 4 (Upload a reference sequence and calculate the global/local

sequence alignment with the previous uploaded file as a primary sequence.) scored 60%

completion rate. Moreover, Task 5 (Generate a report with sequence detail, chromatogram

quality score plot and sequence alignment results) was successful completed at rate of 73%.

55

Table 10: Usability Test Tasks Completion Rate

Participants Task 1 Task 2 Task 3 Task 4 Task 5

Participant 1 ✓ ✓ - - ✓

Participant 2 ✓ ✓ ✓ - ✓

Participant 3 ✓ ✓ ✓ ✓ -

Participant 4 ✓ ✓ ✓ ✓ ✓

Participant 5 ✓ ✓ - - ✓

Participant 6 ✓ ✓ ✓ - ✓

Participant 7 ✓ - ✓ ✓ ✓

Participant 8 ✓ ✓ ✓ ✓ ✓

Participant 9 ✓ ✓ ✓ ✓ -

Participant 10 ✓ ✓ ✓ ✓ ✓

Participant 11 ✓ ✓ ✓ ✓ ✓

Participant 12 ✓ ✓ ✓ - -

Participant 13 ✓ ✓ ✓ ✓ -

Participant 14 ✓ ✓ - ✓ ✓

Participant 15 ✓ - - - ✓

Success 15 13 11 9 11

Task Accomplishment

Success rates

100% 87% 73% 60% 73%

(ii) Mean Time Used on Each Task

The moderator recorded the task execution time for each user participant. The allocated time

for each task ranged from 5 to 10 minutes where by simple tasks were allocated less time and

lengthy tasks had more times respectively. Task 1 had the shortest time for completion with a

mean time of 56 seconds followed by Task 5 and Task 2 with time of 3.1 minutes and 4 minutes

respectively. Task 3 and Task 4 obtained the longest time to complete with mean time of 7.3

minutes and 9 minutes respectively. Over all the completion time ranged from 56 sec to 9

minutes and a commonly time recorded was less than 5 minutes.

56

Figure 24: Mean Completion Time Versus Tasks

(iii) System Usability Scale (SUS) Results

During the post-testing session, participants were asked to rate the web application tool to

capture general usability measures. Below listed are the measures which were captured from

test participants post-test questionnaire.

• If the users would prefer to use the web application tool

• Ease of use

• Learnability

• Assistance from technical personnel

• System functionality integrations

• Recommendation a tool to a colleague

Majority of the participants 86.7% agreed (Agree or Strongly Agree) the web application tool

was easy to use. Additionally, most participants 93% agreed they would prefer to work with

the web application often. Regardless of the higher percentages of participants agreeing the

tool was easy to use, 40% of them agreed that it a technical assistance is requires for them to

operate well the tool. productive using this system. More than 66% participant agreed that the

integrated functorialities were functioning well while more three quarter of the participant

agreed they would recommend the tool to a colleague.

57

Table 11: System Usability Scale (SUS) Results

Post usability test

questionnaire (System

Usability Scale)

Respondents
Percentage

Agree
Strongly

Disagree
Disagree Neutral Agree Strongly Agree

The web application is user

friendly

0 0 2 8 5 86.67%

I would like to use web

application often

0 0 2 10 4 93%

I think most of the users will

be able the fast how to use the

web application

0 2 1 8 4 80%

I will need the help of a

technical person to be able to

use the web application

0 7 2 4 2 40%

I think the web application

units/parts are well

integrated

0 1 4 6 4 66.67%

I will recommend this web

application to my colleagues

0 0 2 9 4 86.67%

58

4.4 Discussion

The finding of this study shows that most of the free open source DNA analysis software tools

particularly those for Sanger sequencing are command-line based which have a steep learning

curve for most users. The command-line based tools require advanced computer literate users

since they can only be operated through commands with which most of the other users are not

well familiar (Feizi & Wong, 2012). The study also revealed that there exists also free open

source software tool for Sanger sequence that offered graphical user interface to users but still

it would require one to have several applications to perform dry laboratory activities since the

tools were limited to specific functionalities only. Interoperability issue was also among

challenges possessed by some of the open source tools which were only limited to the specific

operating system and hence provided room for usage to users with a similar computing

environment. This leads to a limitation that requires users in order to use a particular software

tool must migrate first from the current operating environment to the one suitable for the

software tool to run. As a result, the migration may lead to loss of time and sometimes even

valuable user’s data may get lost if back-up of data was not done.

The study furthermore presented the proposed and developed software tool prototype SSAAT

as an attempt towards a solving challenge previously faced by open source software tools users.

The tool prototype was developed as a web application and it provided both a graphical user

interface and at the same time solved the interoperability across the computing environment

and as a result more users may be able to access and use the tool. Apart from that, the tool

presented consisted of more than integrated DNA analysis functionalities as an attempt towards

a one-stop point application.

The Usability validation results of the proposed software tool prototype show a good response

from users towards adapting and using the developed tool through the scoring of more than

85% for Systems Usability Scales (SUS) results. The SUS results scored from 80.3% and

above, suggest that a product or service is of good quality and may be recommended to other

users (Hosio et al., 2014). The results also spotted that most of the users liked the user interface

of the tool and would like to use it often for themselves SUS score 93%, and this score is a

good indication that users were satisfied with the added usability and are willing to move

towards the online tool. Moreover, more than half of the users found that it was easy for them

to work with the tool without help from technical personnel and also all users were able to

59

complete all test session’s tasks within the provided time. This suggests that the tool had a fair

learning curve for most of the users who used it for the first time.

In addition, the tool also achieved good performance of the online connectivity and page

loading speed both in computer devices and mobile devices with the assumption that there is a

stable connection. The device compatibility results suggest the tool will suitably be accessed

through computer devices such as laptops or desktop computers more than mobile devices.

This could be due to the small size screens of the mobile devices not able to display properly

the tool’s graphics.

However, apart from the good usability results obtained from this study, the users suggested a

number of possible improvements to the tool such as the incorporation of batch processing

capabilities, more options on the chromatogram viewer such as the chromatogram editing, and

integrating remote DNA databases. The users suggestions were important towards improving

the tool nevertheless, they would require more development effort and time, therefore we plan

to work on them in the future versions. Other modifications such as the suggested lighter

interface background colours and the creation of a user guide with some visual illustrations

were easier and more straightforward to implement.

Furthermore, there were some challenges during the usability testing; some test sessions took

longer due to the problem of internet connectivity. The sessions were conducted online through

a teleconference application via internet connection since participants were remotely located.

Also, some participants appeared late in the test session, which led to rescheduling of other test

sessions.

60

CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

The preceding chapter presented the results and discussion of this study. It describes the

findings from the literature about the availability existing open source Sanger sequencing

analysis software tools including their features such as command-line based, desktop stand-

alone application, and web based. The existing open source tools were also found with

limitations such as having steep learning curve, lack of cross platform interoperability, some

being open source but not free available and lastly, lack of integrated functionalities.

The author presented results of the proposed and developed software tool and the analyses

results of the tool validation. This study made an attempt to develop a free and user-friendly

web application for Sanger sequence analyses named Sanger Sequence Automatic Analysis

Tool (SSAAT). The development of SSAAT done as an attempt to address some of the

challenges possessed by the existing tools that includes empowering users with friendly

interaction with their software tools by building graphical user interface (GUI). This would

decrease the steep learning curve for using and interacting with the tool by the biologist and

this will save time and resources required for analyses.

Sanger sequence analysis tool development also attempted to address the cross-platform

interoperability issues through building the software tool as a web application which does not

installation rather can be accessed through internet browser. In addition to that, the web

application would facilitate sharing of computation resources by more than one user and could

be accessed remotely by more than one user at a time.

Additionally, through the integration of several DNA analysis functionalities such base-calling,

chromatogram display, polymorphism detection, sequence alignment and reporting SSAAT

made an attempt address the lack of functionalities limitation. This an attempt made SSAAT

to became a one stop point application (Smith, 2014). This feature enable user to rely on a

single application while working and hence increase concentration while saving time and other

resources (Smith, 2014).

Moreover, SSAAT was developed with free and open source in mind and hence will not only

be available freely to used but also the source codes will publicly available for other scholars

61

to study and develop other software tools from the base codes. This is an attempt towards

eliminating barriers to availability of free and open source software for Sanger sequence DNA

analyses.

Usability assessment results suggest that most of users will be able to use the software tool

without assistance. This is a good indicator that the tool is easy to use and hence most of the

users a likely to often use then tool. Most of the users liked to use SSAAT in their works and

would recommend to colleagues. However, usability test results also highlighted that few of

the user found SSAAT functionalities not well integrated and some of the would require a

technical assistance while working with the tool.

Some limitations of SSAAT one is the lack of batch processing capabilities. The tool only

compute analyses for DNA files one at a time. This feature is important especially if the user

has more than one Sanger sequence DNA files to work with at time. Currently, SSAAT only

support analysis of single file at a time as an initial prototype aiming at address the existing

tools limitation first. Other limitation is the capability to store user data in database and security

mechanism to protect data sharing and accessing from the database. In future this are among

important features that will be incorporated for the next version of SSAAT.

5.2 Recommendations

The Sanger sequencing technique is still a very important method for the molecular biology

research studies up to date due to its high accuracy as compared to other methods. It is clear

that this DNA sequencing technique will still exist even in the future to come and hence more

investment is required to enhance the method. In the software world Sanger sequence analysis

software tools lags behind and especially for the free and open source software. There comes

a necessity to have an active open source community for developing, documenting and sharing

software and methods for Sanger sequence across the globe and especially in Africa where we

current need more scientist to handle our local matters.

It is recommended to bioinformaticians to put more effort in the development tools to Sanger

sequence tools as it is done for the of Next Generation sequence analysis software. Reusability

of the existing software will increase the usage of the free open-source software tools for

Sanger sequence analyses.

62

The future work of this study will focus on improving SSAAT by incorporating batch

processing to the tool so that more than one DNA files may analyzed at a time. Moreover,

database connectivity is also important so as to be able to store the processed and raw data files,

share and manage data at the same time providing security mechanism to protect how to access

and share data. These features will increase the efficiency of SSAAT by enabling users to work

with analyses of large Sanger sequence data sets within a minimal time with a secured storage

capability.

63

REFERENCES

Abate, A. R., Hung, T., Sperling, R. A., Mary, P., Rotem, A., Agresti, J. J., Weiner, M. A., &

Weitz, D. A. (2013). DNA sequence analysis with droplet-based microfluidics. Lab on

a Chip, 13(24), 4864–4869. https://doi.org/10.1039/c3lc50905b

Allaire, J. J. (2015). RStudio: Integrated development environment for R. https://www.r-

project.org/conferences/useR-2011/abstracts/180111-allairejj.pdf

Apache. (2014). Apache JMeter - Apache JMeterTM. Apache JMeter. https://jmeter.apache.org/

Barsch, S., Klein, A., & Verstraeten, P. (2016). About the authors. In The Imperfect Historian.

https://doi.org/10.3726/978-3-653-03016-7/8

Beeley, C. (2013). Web Application Development with R using Shiny. In Surveillance and

Society. https://doi.org/10.1017/CBO9781107415324.004

Applied Biosystems Genetic Analysis .(2006). Data File Format Subject: ABIF File Format

Specification and Sample File. https://projects.nfstc.org/workshops/resources/ articles/

ABIF_File_Format.pdf

Bisandu, D. B. (2019). Design Science Research Methodology in Computer Science and

Information Systems. International Journal of Information Technology, 11, 1–7.

Boltz, M., Rau, H., Williams, P., Rau, H., Williams, P., Upton, J., & Remaud, A. (2013). Illness

Cognitions and Perceptions. Encyclopedia of Behavioral Medicine, 2013, 1027-1030.

https://doi.org/10.1007/ 978-1-4419-1005-9_706

Burzacca, P., & Paternò, F. (2013). Remote usability evaluation of mobile web applications.

Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 8004 LNCS(PART 1).

https://doi.org/ 10.1007/978-3-642-39232-0_27

Chambers, J. (2008). Software for data analysis: programming with R. Springer Science and

Business Media. file:///C:/Users/user/Downloads/productFlyer_978-0-387-75935-7.

pdf

https://projects.nfstc.org/workshops/resources/
https://doi.org/10.1007/
file:///C:/Users/user/Downloads/productFlyer_978-0-387-75935-7

64

Chang, C. T., Tsai, C. N., Tang, C. Y., Chen, C. H., Lian, J. H., Hu, C. Y., Tsai, C. L., Chao,

A., Lai, C. H., Wang, T. H., & Lee, Y. S. (2012). Mixed Sequence Reader: A Program

for Analyzing DNA Sequences with Heterozygous Base Calling. The Scientific World

Journal, 2012, 1–10. https://doi.org/10.1100/2012/365104

Chmielecki, J., & Meyerson, M. (2014). DNA Sequencing of Cancer: What Have We Learned?

Annual Review of Medicine, 65(1), 63–79. https://doi.org/10.1146/annurev-med-

060712-200152

Clevenger, J., Chavarro, C., Pearl, S. A., Ozias-Akins, P., & Jackson, S. A. (2015). Single

Nucleotide Polymorphism Identification in Polyploids: A Review, Example, and

Recommendations. https://doi.org/10.1016/j.molp.2015.02.002

Curcio, K., Navarro, T., Malucelli, A., & Reinehr, S. (2018). Requirements engineering: A

systematic mapping study in agile software development. Journal of Systems and

Software, 139, 32–50. https://doi.org/10.1016/j.jss.2018.01.036

Davis, D., & Jiang, S. (2016). Usability testing of existing type 2 diabetes mellitus websites.

International Journal of Medical Informatics, 92, 62–72. https://doi.org/10.1016/j.

ijmedinf.2016.04.012

Delseny, M., Han, B., & Hsing, Y. I. (2010). High throughput DNA sequencing: The new

sequencing revolution. Plant Science, 179(5), 407-422 https://doi.org/10.1016/j.

plantsci.2010.07.019

Dmitriev, D. A., & Rakitov, R. A. (2008). Decoding of superimposed traces produced by direct

sequencing of heterozygous indels. PLoS Computational Biology, 4(7), 1-10

https://doi.org/10. 1371/journal.pcbi.1000113

Dorst, K. (2011). The core of “design thinking” and its application. Design Studies, 32(6), 521-

532. https://doi.org/10.1016/j.destud.2011.07.006

Ebert, C., Abrahamsson, P., & Oza, N. (2012). Lean software development. IEEE Computer

Architecture Letters, 29(05), 22-25. https://doi.org/10.1109/MS.2012.116

Ewens, W. J. (2013). Genetic Variation. In Brenner’s Encyclopedia of Genetics. https://doi.

org/10.1016/B978-0-12-374984-0.00631-8

https://doi.org/10.1016/j
https://doi.org/10.1016/j
https://doi.org/10
https://doi/

65

Ewing, B., & Green, P. (1998). Base-calling of automated sequencer traces using phred. II.

Error probabilities. Genome Research, 8(3), 186–194. https://doi.org/10.1101/gr.8.3.

186

Feizi, A., & Wong, C. Y. (2012). Usability of user interface styles for learning a graphical

software application. 2012 International Conference on Computer and Information

Science, ICCIS 2012 - A Conference of World Engineering, Science and Technology

Congress, ESTCON 2012 - Conference ProceediNext-Gen. https://doi.org/10.1109/

ICCISci.2012.6297188

Fernandez, A., Insfran, E., & Abrahão, S. (2011). Usability evaluation methods for the web: A

systematic mapping study. Information and Software Technology, 53(8), 789–817.

https://doi.org/10.1016/j.infsof.2011.02.007

Gabarro, S. A. (2015). Introduction to HTML. In Web Application Design and Implementation.

https://doi.org/10.1109/9780470083963.ch3

Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B.,

Gautier, L., Ge, Y., Gentry, J., & Zhang, J. (2004). Bioconductor: Open software

development for computational biology and bioinformatics. Genome Biology, 5(10), 1-

16. https://doi.org/10.1186/gb-2004-5-10-r80

Goldberg, S. M. D., Johnson, J., Busam, D., Feldblyum, T., Ferriera, S., Friedman, R., Halpern,

A., Khouri, H., Kravitz, S. A., Lauro, F. M., Li, K., Rogers, Y. H., Strausberg, R.,

Sutton, G., Tallon, L., Thomas, T., Venter, E., Frazier, M., & Venter, J. C. (2006). A

Sanger/pyrosequencing hybrid approach for the generation of high-quality draft

assemblies of marine microbial genomes. Proceedings of the National Academy of

Sciences, 103(30), 11240-11245. https://doi.org/10. 1073/pnas.0604351103

Gonzaga-Jauregui, C., Lupski, J. R., & Gibbs, R. A. (2012). Human Genome Sequencing in

Health and Disease. Annual Review of Medicine, 63, 35-61 https://doi.org/10.1146

/annurev-med-051010-162644

Google. (2015). PageSpeed Insights. https://developers.google.com/speed/pagespeed/insights

_extensions

Grechanik, M., & Devanla, G. (2016). Mutation Integration Testing. Proceedings - 2016 IEEE

International Conference on Software Quality, Reliability and Security, QRS 2016,

353–364. https://doi.org/10.1109/QRS.2016.47

https://doi.org/10.1101/
https://doi.org/10.1109/
https://doi.org/10
https://doi.org/10.1146
https://developers.google.com/speed

66

Greene, E. C. (2016). DNA sequence alignment during homologous recombination. Journal of

Biological Chemistry, 291(22), 11572-11580. https://doi.org/10.1074/jbc.R116.7248

07

Hill, A. J. T., Demarest, B., & Hill, M. J. (2014). Package ‘sangerseqR. http://citeseerx

.ist.psu.edu/viewdoc/download?doi=10.1.1.454.2534&rep=rep1&type=pdf

Hill, J. T. (2015). Walkthrough for using the sangerseqR package. https://bioconductor.

riken.jp/packages/3.2/bioc/vignettes/sangerseqR/inst/doc/sangerseq_walkthrough.pdf

Hillgren, P. A., Seravalli, A., & Emilson, A. (2011). Prototyping and infrastructuring in design

for social innovation. CoDesign, 7(3–4), 169–183. https://doi.org/10.1080/15710882.

2011.630474

Hingorani, M. M. (2013). Template. In Brenner’s Encyclopedia of Genetics. https://doi.org/10.

1016/B978-0-12-374984-0.01526-6

Huber, W., Carey, V. J., Gentleman, R., Anders, S., Carlson, M., Carvalho, B. S., Bravo, H.C.,

Davis, S., Gatto, L., Girke, T., & Gottardo, R. (2015). Orchestrating high-throughput

genomic analysis with Bioconductor. Nature Methods, 12(2), 115–121. https://doi.

org/10.1038/nmeth.3252

Weppner, J., Poxrucker, A., Lukowicz, P., Ishimaru, S., Kunze, K., & Kise, K. (2014). Shiny:

An activity logging platform for Google Glass. In Proceedings of the 2014 ACM

International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct

Publication. https://doi.org/10.1145/2638728.2638798

Jackson, M., Crouch, S., & Baxter, R. (2011). Software evaluation: criteria-based assessment.

Software Sustainability Institute, 2011, 1–13. http://software.ac.uk/sites/default/files/

SSI-SoftwareEvaluationCriteria.pdf

Jorde, L. B., & Wooding, S. P. (2004). Genetic variation, classification and “race.” Nature

Genetics. https://doi.org/10.1038/ng1435

Lee, N. J., & Bakken, S. (2008). Usability Testing of a Prototype Personal Digital Assistant

(PDA)-based Decision Support System for the Management of Obesity. Perspectives

in Nursing Science, 2018, 17-41.

Kant, T. (2010). Open source bioinformatics workbench options for life science

researchers. New York Science Journal, 3(10), 82-87.

https://doi.org/10.1074/jbc
http://citeseerx/
https://bioconductor/
https://doi.org/10.1080/15710882
https://doi.org/10
http://software.ac.uk/sites/default/files/

67

Kircher, M., & Kelso, J. (2010). High-throughput DNA sequencing - Concepts and limitations.

In BioEssays. https://doi.org/10.1002/bies.200900181

Koziokas, P. T., Tselikas, N. D., & Tselikis, G. S. (2017). Usability Testing of Mobile

Applications. Proceedings of the 21st Pan-Hellenic Conference on Informatics - PCI

2017, 1–2. https://doi.org/10.1145/3139367.3139410

Kuhner, M. K., Beerli, P., Yamato, J., & Felsenstein, J. (2000). Usefulness of single nucleotide

polymorphism data for estimating population parameters. Genetics, 156(1), 439-447

Kumar, A., & Kumar, A. (2019). Web Application Frameworks. In Web Technology.

https://doi.org/10.1201/9781351029902-10

Lanka, R., Koti, S., Sunkara, P. S. S., & Undamatla, J. (2014). DNA sequencing analysis

software for Sanger data-sets: Comparisons of basic features useful for mutational

studies. Current Trends in Biotechnology and Pharmacy, 8(1), 11–17.

Leaché, A. D., & Oaks, J. R. (2017). The Utility of Single Nucleotide Polymorphism (SNP)

Data in Phylogenetics. Annual Review of Ecology, Evolution, and Systematics.

https://doi.org/10.1146/annurev-ecolsys-110316-022645

Leipzig, J. (2017). A review of bioinformatic pipeline frameworks. Briefings in

bioinformatics, 18(3), 530-536. https://doi.org/10.1093/bib/bbw020

Luan, P. T., Ryder, O. A., Davis, H., Zhang, Y. P., & Yu, L. (2013). Incorporating indels as

phylogenetic characters: Impact for interfamilial relationships within Arctoidea

(Mammalia: Carnivora). Molecular Phylogenetics and Evolution, 66(3), 748-756

https://doi.org/10. 1016/j.ympev.2012.10.023

Macefield, R. (2009). How to specify the participant group size for usability studies: A

practitioner’s guide. Journal of Usability Studies, 5(1), 34–45.

Machado, M., Magalhães, W. C. S., Sene, A., Araújo, B., Faria-Campos, A. C., Chanock, S.

J., Scott, L., Oliveira, G., Tarazona-Santos, E. & Rodrigues, M. R. (2011). Phred-Phrap

package to analyses tools: A pipeline to facilitate population genetics re-sequencing

studies. Investigative Genetics, 2(1), 1-7. https://doi.org/10.1186/2041-2223-2-3

Martin, R., & Euchner, J. (2012). Design thinking. Research Technology Management.

https://doi.org/10.5437/08956308X5503003

https://doi.org/10.1093/bib/bbw020
https://doi.org/10

68

Martins, R. D. S., Campos, J., M., Dos-Santos, M., A., Marques Zembrzuski, V., da Fonseca,

A. C. P., Abreu, G. D. M., Cabello, P. H., & De-Cabello, G. M. K. (2019). Identification

of a novel large deletion and other copy number variations in the CFTR gene in patients

with Cystic Fibrosis from a multiethnic population. Molecular Genetics and Genomic

Medicine, 7(7), 1-7. https://doi.org/10.1002/mgg3.645

Maxam, A. M., & Gilbert, W. (1977). A new method for sequencing DNA. ProceediNext-Gen

of the National Academy of Sciences of the United States of America, 74(2), 560–564.

https://doi.org/10.1073/pnas.74.2.560

Nagaraj, A., Gattu, H., Shetty, P. K., & Professor, A. (2014). Research Study on Importance

of Usability Testing/ User Experience (UX) Testing. International Journal of Computer

Science and Mobile Computing, 310(10), 78–85.

Nguyen, N. T., Trawiński, B., Fujita, H., & Hong, T. P. (2016). Responsive Web Design:

Testing Usability of Mobile Web Applications. Lecture Notes in Computer Science

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics). https://doi.org/10.1007/978-3-662-49381-6

Nidhra, S. (2012). Black Box and White Box Testing Techniques - A Literature Review.

International Journal of Embedded Systems and Applications, 2(2), 29–50.

https://doi.org/10.5121/ijesa.2012.2204

Oluwatosin, H. S. (2014). Client-Server Model. IOSR Journal of Computer Engineering, 16(1),

2278-8727. https://doi.org/10.9790/0661-16195771

Pagès, H., Aboyoun, P., Gentleman, R., & DebRoy, S. (2017). BiostriNext-Gen: Efficient

manipulation of biological striNext-Gen. https://bioconductor.org/packages/release

/bioc/html/Biostrings.html

Pareek, C. S., Smoczynski, R., & Tretyn, A. (2011). Sequencing technologies and genome

sequencing. Journal of Applied Genetics, 52(4), 413-435 https://doi.org/10.1007/ s13353-

011-0057-x

Pekin, D., Skhiri, Y., Baret, J. C., Le Corre, D., Mazutis, L., Ben Salem, C., Millot, F., El

Harrak, A., Hutchison, J. B., Larson, J. W., Link, D. R., & Taly, V. (2011). Quantitative

and sensitive detection of rare mutations using droplet-based microfluidics. Lab on a

Chip, 11(13), 2156–2166. https://doi.org/10.1039/c1lc20128j

https://bioconductor.org/packages
https://doi.org/10

69

Pereira, F., Carneiro, J., Amorim, A., & Pereira, F. (2008). Identification of species with DNA-

based technology: Current progress and challenges. Recent Patents on DNA and Gene

Sequences, 2(3), 187-200. https://doi.org/10.2174/187221508786241738

Pernstål, J., Feldt, R., & Gorschek, T. (2013). The lean gap: A review of lean approaches to

large-scale software systems development. Journal of Systems and Software, 86(11),

2797-2821. https://doi.org/10.1016/j.jss.2013.06.035

Poppendieck, M., & Cusumano, M. A. (2012). Lean software development: A tutorial. IEEE

Software, 29(5), 26-32. https://doi.org/10.1109/MS.2012.107

Quiñones, D., Rusu, C., & Rusu, V. (2018). A Methodology to Develop Usability/User

eXperience Heuristics. Computer Standards and Interfaces, 59, 109-129 https://doi.

org/10.1016/ j.csi.2018.03.002

R Development Core Team, R. (2011). R: A Language and Environment for Statistical

Computing. In R Foundation for Statistical Computing Vienna, Austria. https://doi.org/

10.1007/978-3-540-74686-7

Lanka, R., Koti, S., Phani, S. S., & Undamatla, J. (2014). DNA Sequencing Analysis Software

for Sanger Data-Sets: Comparisons of Basic features Useful for Mutational

Studies. Current Trends in Biotechnology and Pharmacy, 8(1), 11-17.

Rausch, T. (2018). Workshop: Adopt open standards and interoperable technologies to

securely integrate your medical device to clinical environments https://www.pharma-

iq.com/events-sdmdconference/speakers/tracy-rausch

Reese, G. (2000). Database Programming with JDBC and Java. Database Programming with

JDBC and Java. http://dx.doi.org/10.1016/j.jff. 2011.01.003

Roach, K. (2010). The Role of Innocence Commissions: Error Discovery, Systemic Reform or

Both. Chicago-Kent Law Review. https://heinonline.org/HOL/Page? handle=hein.

journals/chknt85&id=97&div=&collection=

Roberts, M. (2011). Phred quality score. In Genome. https://doi.org/10.1101/gr.8.3.175.

Samanta, J., Bhaumik, J., Barman, S., & Maity, R. K. (2017). Binary error correcting code for

DNA databank. Lecture Notes in Electrical Engineering, 470, 1–12. https://doi.org/10.

1007/978-981-10-8585-7_1

https://doi.org/
https://www.pharma-iq.com/events-sdmdconference/agenda/pre-conference-workshop-day
https://www.pharma-iq.com/events-sdmdconference/agenda/pre-conference-workshop-day
http://dx.doi.org/10
https://heinonline.org/HOL/Page
https://doi.org/10

70

Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating

inhibitors. ProceediNext-Gen of the National Academy of Sciences of the United States

of America, 74(12), 5463–5467. https://doi.org/10.1073/PNAS.74.12.5463

Scacchi, W., & Jensen, C. (2012). Open Source Software Development. In Leadership in

Science and Technology: A Reference Handbook. https://doi.org/10.4135/978141

2994231.n88

Schema, S. F. (2009). Applied Biosystems Genetic Analysis Data File Format SUBJECT: ABIF

File Format Specification and Sample File Schema. Retrieved from http://www6.

appliedbiosystems.com/support/software_community/ABIF_File_Format.pdf

Seemann, T. (2013). Ten recommendations for creating usable bioinformatics command line

software. GigaScience, 2(1), 2047-217X. https://doi.org/10.1186/2047-217X-2-15

Seroussi, E., Ron, M., & Kedra, D. (2002). ShiftDetector: Detection of shift mutations.

Bioinformatics, 18(8), 1137–1138. https://doi.org/10.1093/bioinformatics/18.8.1137

Shendure, J., Balasubramanian, S., Church, G. M., Gilbert, W., Rogers, J., Schloss, J. A., &

Waterston, R. H. (2017). DNA sequencing at 40: Past, present and future. Nature,

550(7676), 345-353. https://doi.org/10.1038/nature24286

Sillitti, A., & Succi, G. (2005). Requirements engineering for agile methods. In Engineering

and Managing Software Requirements. Springer Berlin Heidelberg. https://doi.org/10.

1007/3-540-28244-0_14

Singh, A., & Bhatia, P. (2016). Automated sanger analysis pipeline (ASAP): A tool for rapidly

analyzing sanger sequencing data with minimum user interference. Journal of

Biomolecular Techniques, 27(4), 129–131. https://doi.org/10.7171/jbt.16-2704-005

Smith, D. R. (2014). Buying in to bioinformatics: An introduction to commercial sequence

analysis software. Briefings in Bioinformatics, 16(4), 700–709. https://doi.org/10.

1093/bib/bbu030

Straiton, J., Free, T., Sawyer, A., & Martin, J. (2019). From Sanger sequencing to genome

databases and beyond. BioTechniques, 66(2), 60–63. https://doi.org/10.2144/btn-2019-

0011

https://doi.org/10.4135/
http://www6/
https://doi.org/10
https://doi.org/10

71

Strecker, J., & Memon, A. M. (2011). Testing Graphical User Interfaces. In Encyclopedia of

Information Science and Technology. https://doi.org/10.4018/978-1-60566-026-4.

ch596

Stucky, B. J. (2012). SeqTrace: a graphical tool for rapidly processing DNA sequencing

chromatograms. Journal of Biomolecular Techniques, 23(3), 90–93. https://doi.org/10.

7171/jbt.12-2303-004

Taylor, J. A., & Kieser, J. A. (2016). Forensic odontology: Principles and practice. In Forensic

Odontology: Principles and Practice. Wiley Blackwell. https://doi.org/10.1002/

9781118864418

Teama, S. (2018a). DNA Polymorphisms: DNA-Based Molecular Markers and Their

Application in Medicine. Genetic Diversity and Disease Susceptibility, 2018, 5-40.

https://doi.org/10.5772/intechopen.79517

Van-Oorschot, R. A. H., Ballantyne, K. N., & Mitchell, R. J. (2010). Forensic trace DNA: A

review. In Investigative Genetics (Vol. 1, Issue 1). https://doi.org/10.1186/2041-2223-

1-14

Vuksanovic, I. P., & Sudarevic, B. (2011). Use of web application frameworks in the

development of small applications. MIPRO 2011 - 34th International Convention on

Information and Communication Technology, Electronics and Microelectronics -

ProceediNext-Gen. https://ieeexplore.ieee.org/abstract/document/5967100

Watson, J. D., & Crick, F. H. (1953). Molecular structure of nucleic acids: A structure for

deoxyribose nucleic acid. Nature, 171(4356), 737-738. https://www.ias.ac.in/article/

fulltext/reso/009/11/0096-0098

Wilson, C. (2013). User interface inspection methods: A user-centered design method.

Newnes. https://www.amazon.com/User-Interface-Inspection-Methods-User-Centered

/dp/01 2410391X

Xu, J. Y., Xu, G. B., & Chen, S. L. (2009). A new method for SNP discovery. BioTechniques,

46(3), 201–208. https://doi.org/10.2144/000113075

Zhang, F., Gu, W., Hurles, M. E., & Lupski, J. R. (2009). Copy Number Variation in Human

Health, Disease, and Evolution. Annual Review of Genomics and Human Genetics.

https://doi.org/10.1146/annurev.genom.9.081307.164217

https://doi.org/10.4018/978-1-60566-026-4
https://doi.org/10
https://doi.org/10.1002/
https://www.ias.ac.in/article/
https://www.amazon.com/User-Interface-Inspection-Methods-User-Centered%20/dp/01%202410391X
https://www.amazon.com/User-Interface-Inspection-Methods-User-Centered%20/dp/01%202410391X

72

Zhidkov, I., Cohen, R., Geifman, N., Mishmar, D., & Rubin, E. (2011). CHILD: A new tool

for detecting low-abundance insertions and deletions in standard sequence traces.

Nucleic Acids Research, 39(7), e47-e47. https://doi.org/10.1093/nar/gkq1354.

73

APPENDICES

Appendix 1: Sanger Sequence Automatic Analysis Tool Server Source Code

74

75

76

77

78

79

Appendix 2: Sanger Sequence Automatic Analysis Tool User Interface Source Code

80

81

82

83

84

85

86

Appendix 3: Sample Output the DNA Data In Fasta Format
>BC18_IB2763F

ACGTCGAGCATGCGGCGGAGCTCACCGCCGGATTCTACAATGTGGCGGGAAGAAGACGGT

TATCGGCCTATTGCCAGGATGCTGGAAAGGCACCATGCCACTCTGAACTTCACTTGCCTT

GAGATGAGAGACTCCGAACAGCCTGCCGAGGCCAAGAGTGCTCCTCAAGAACTCGTTCAA

CAGGTACGTACCATAACCAAAATTCTGCAACATCAAAATGAATATATAAAAGAAGCCTAG

GAGCTAGCATAGTGGTTGATCACCCTACCTCAAGTCATAACTGAAATCGGAGGTAGGGGT

TGATTGTGTTAGCCTAATTTGAGCAGTAGTGATGTAGTGAATACATCGAAATATACGAAT

ATGTCTAAGTATCGTCTAGGGTTCGGTATGCAATTCAGCTCGAGTAACTGTGATAGCTTG

CTAGCTAGCTATATATGTAGGATGGAAGACACACTACCAAAAATAATGACTGTCTCTTTC

TTTCCTAACATATGTGTGCCTGCCCGCATACCGCATGTGCTTCACTAGACCTTGATGTGA

AAATGATATATAATCTAAAGACACATGATAGACAGGTTGTAAAGAAGACGTAACGAACTC

ATGCTTAACTAAACCTTTATGATACAACTATGTCACATCTCAATAACTCATCGACACATT

ATAGACAAGCTGTATAGAAGTTGTATGGGACTTGTGTCTAACTTGCGATGATCACCGAAC

GATGTCCCATCTCAAGCACTTCCACCTGCATTCCAACTCAAATTGAGGGTACATTGAGAT

TCCACTGCGACTCCTCTGCATATGCCTCTCCTATTTAAGTGTCACTAAACTGTCACATCT

TAACATGATCTCGTCTTGATCTTCTCTATGCCAGCTAACTATCTACCTACCTGCTTGCTT

ACTACTGACAGTTAATTAAAGTTGAGTTGAATGATTGTGCAGTGTAGAGAGAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATATTTAAAAAAAAAAACCCCAAGAAGGAA

GGAAGGAAGGAAGGGGGGGAAGAAAAAGAGGGAGAGGAAAGAGAGAAGAAGAGGGGAAGA

GAGGGGAGGAAGGGGGGAGGGGAAGAAGGAGAAGGAAGAAGGAGAGGGGAGAAGAAGGAG

AAGGGAAGAAGAGAGAAAGAAGGAAAGAGAAGGGGAAAGGGGGGGGAGGAGAAGAGAGAG

AGGAGGGAAGAAGGAGAAGAGGAGAAAAGAAAGAAGGGGGAGAGAAGGAAGAGAAGGGAG

AGGGGAGGGAGAAGAAGAAGAAGAGGAAAGAGAAAGGAAGGGGGAAAAGGGAGAGAGGAG

AGAAGAGAGAGGAGAGAGAGAAAAGAGAAAGAAGGAGAAGAAGAAGAAGAGGGAGGAGAG

GAGGAAAGAAGAAAAGAGAGAGGGAGAGAAGAGGAAGAAGGGGAGGAGGGAGAAGGAAGA

GGGAAAAGAAGGAGAGAAAAGAAAAAGAGAAAAGAGAGAGGAAGAGAGGAAGAAGAGAGA

AAAGGGAGAAGAGGAGACGAAAAAGGAAGAGAAAGGGAAGAAAGAGGAGGAGGAGGAGAA

AAGAAGAAGGAAAAGAAGGAGGAAGAAGGAAGAGGGAGAGGGAGAAAGGAAAGAAAAGAG

GGAAAAGAGAGAGGAGAGAAAGAGAAAG

Appendix 4: Sequence Alignment Results

87

Appendix 5: Chromatogram Viewer Results

88

89

RESEARCH OUTPUTS

Publication Paper

Mero, V., & Machuve, D. (2021). The Usability Testing of SSAAT, a Bioinformatic Web

Application for DNA Analysis at a Nucleotide Level. Engineering, Technology &

Applied Science Research, 11(3), 7075-7078.

Poster Presentation

