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a b s t r a c t 

Objectives: Plasmids are infectious double stranded DNA molecules that are found within bacteria. Hori- 

zontal gene transfer promotes successful spread of different types of plasmids within or among bacteria 

species, making their detection an important task for guiding clinical treatment. We used whole genome 

sequenced data to determine the prevalence of plasmid replicon types in clinical bacterial isolates, the 

presence of resistance and virulence genes in plasmid replicon types, and the relationship between resis- 

tance and virulence genes within each plasmid replicon. 

Methods: All bacterial sequences were de novo assembled using Unicycler before extraction of plasmids. 

Assembly graphs were submitted to Gplas + plasflow for plasmid contigs prediction. The predicted plasmid 

contigs were validated using PlasmidFinder. 

Results: A total of 159 (56.2%) out of 283 bacterial isolates were found to carry plasmid replicons, with 

Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus being the most prevalent plasmid carri- 

ers. A total of 26 (86.7%) multiple-replicon types were found to carry both resistance and virulence genes 

compared to 4 (13.3%) single plasmid replicons. No statistically significant correlation was found between 

the number of antibiotic resistance and virulence genes in multiple-replicon types ( r = - 0.14, P > 0.05). 

Conclusion: Our findings show a relatively high proportion of plasmid replicon-carrying isolates suggest- 

ing selection pressure due to antibiotic use in the hospital. Co-occurrence of antibiotic resistance and 

virulence genes in clinical isolates is a public health problem warranting attention. 

© 2022 The Authors. Published by Elsevier Ltd on behalf of International Society for Antimicrobial 

Chemotherapy. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Plasmids are circular, double-stranded DNA molecules that oc- 

ur naturally in bacterial cells [1] , whose genes often provide evo- 

utionary advantages for bacteria, such as antimicrobial resistance 

nd/or virulence [ 2 , 3 ]. Plasmids are important vehicles in dissem- 

nating and acquiring antibiotic resistance and virulence, and can 

hus constitute a major burden on human health [4] . Recent stud- 

es have suggested that the prevalence of antimicrobial resistance 

AMR) is higher in Low- and Middle-income Countries compared to 
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uropean countries and the United States [ 5 , 6 ]. There is however, 

imited knowledge regarding the dissemination of antibiotic resis- 

ance genes and virulence among clinical isolates in Sub-Saharan 

frica. This study was conducted to determine the proportion 

f bacterial isolates carrying plasmid replicons, to identify plas- 

id replicons that mediated resistance and virulence genes, and 

o investigate the relationship between antibiotic resistance genes 

nd virulence genes within multiple incompatibility groups using 

hole genome sequence data from bacterial isolates among inpa- 

ients admitted at the Kilimanjaro Christian Medical Centre (KCMC) 

n Tanzania. 
ty for Antimicrobial Chemotherapy. This is an open access article under the CC 
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Table 1 

Demographic and clinical characteristics of the study patients 

Patient characteristics Missing a (%) Total (%) 

Number of patients 128 (100) 

Mean age in years (SD) 46.2 (18.0) 

Gender 4 (3.1) 

Female 47 (36.7) 

Male 77 (60.2) 

Ward of admission 1 (0.8) 

Surgical 62 (48.4) 

Surgical ICU 9 (7.1) 

Medical 52 (40.6) 

Medical ICU 4 (3.1) 

Specimen collected 1 (0.8) 

Blood 8 (6.3) 

Sputum 13 (10.2) 

Stool 19 (14.8) 

Swab 87 (67.9) 

Underlying conditions 

Cancer 6 (4.7) 

Diabetes 28 (21.9) 

HIV 2 (1.5) 

Tuberculosis 6 (4.7) 

Others 86 (67.2) 

Type of wound 

Burn wound 11 (8.6) 

Diabetic wound 24 (18.8) 

Motor traffic wound 6 (4.6) 

Post-surgical wound 10 (7.8) 

Others 77 (60.2) 

History of hospitalization 8 (6.3) 

No 78 (60.9) 

Yes 42 (32.8) 

Patient hospital transfer 3 (2.3) 

No 44 (34.4) 

Yes 81 (63.3) 

Patient ward transfer 5 (3.9) 

No 110 (85.9) 

Yes 13 (10.2) 

Median time in days stayed in the hospital before survey (IQR) 8 (6.3) 8 (4–11.5) 

SD, standard deviation; ICU, intensive care unit; IQR, interquartile range. 
a Missing values in each variable 
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. Materials and methods 

.1. Study setting: Whole-genome sequencing and library preparation 

Kilimanjaro Christian Medical Centre (KCMC) is one of Tanza- 

ia’s five zonal referral hospitals, located in Moshi, northern Tan- 

ania. KCMC has a bed capacity of 650 and serves a catchment 

rea of about 15 million people. It serves around 500 outpatients 

aily, from different parts of Tanzania [7] . The whole genome se- 

uence data that were analyzed originated from a prospective 

ross-sectional study conducted at KCMC between August 2013 and 

ugust 2015. In this study, a total of 56 stool, 122 sputum, 126 

lood, and 286 wound swabs (wound/pus) clinical samples, with 

atients’ clinical and socio-demographic characteristics, were col- 

ected from 575 patients admitted to KCMC hospital [ 8 , 9 ]. Writ-

en informed consent was obtained from each participant and from 

arents or guardians of children before enrollment into the study. 

Collected specimens were taken to the microbiology unit at Kil- 

manjaro Clinical Research Institute (KCRI) for culture and identifi- 

ation of bacterial isolates. Of 590 specimens collected, 249 were 

ulture positive, resulting in 377 isolates [8] . All bacterial isolates 

ere sequenced in the KCRI genomics lab, and all sequences were 

rchived on the KCRI compute cluster. In brief, whole genome se- 

uencing was performed for genomic DNA that was extracted from 

ultures of bacterial isolates using the Easy-DNA Extraction Kit (In- 

itrogen®). Short-read whole genome sequencing was performed 

sing the Illumina MiSeq platform (Illumina Inc.). Libraries for Il- 

umina sequencing were constructed using the Illumina Nextera 
385
T kit (Illumina Ltd., San Diego, CA) according to the manufac- 

urer’s recommendations. The libraries were sequenced on Illumina 

iSeq platform using the 2 × 250 bp paired-end protocol, pre- 

iously reported by Kumburu et al. [8] and Sonda et al. [9] . For

his study, a total of 283 bacterial whole genomes isolates with 

ssociated metadata were retrieved for analysis. Additional ethical 

pproval was obtained from the Ifakara Health Institute Research 

thics Committee (IHI/IRB/No: 14-2021) for plasmid characteriza- 

ion. 

.2. Bioinformatics analysis 

.2.1. Quality control and trimming of Illumina sequences 

The following steps were followed: (i) All bacterial raw reads 

ere submitted to the in-house bacterial analysis pipeline (BAP), 

vailable at https://github.com/zwets/kcri- cge- bap . Assembly was 

erformed using SKESA 2.4.0 [10] . (ii) All resulting assemblies were 

hen processed in batches by the Genome Taxonomy Database 

oolkit (GTDB-Tk) 0.3.2 [11] for detailed taxonomic assignment. (iii) 

etrics produced by the BAP and GTDB-Tk were then used to as- 

ess the quality of each assembly. Assessment was based on read 

ounts, coverage depth, assembly structure (contig count, N1, N50, 

50), deviation of assembly length from reference, GTDB alignment 

raction, and GTDB Multi-Locus Sequence Alignment (MSA) cover- 

ge. A six-point scale was used for assembly quality rating: 0 (Un- 

sable), 1 (Mix), 2 (Bad), 3 (Usable), 4 (Good), and 5 (Excellent). 

iv) Finally, categories 0 to 2 were excluded, while categories 3 

hrough 5 were used for subsequent analysis. Every assembly in 

https://github.com/zwets/kcri-cge-bap
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Table 2 

Proportion of bacterial isolates that carried plasmid replicons. 

Plasmid replicons 

Isolates Single Multiple a 

Species n % n n 

Enterobacter asburiae 1 0.6 1 0 

Enterobacter cloacae 3 1.9 1 2 

Enterobacter hormaechei 10 6.3 6 4 

Enterobacter kobei 1 0.6 0 1 

Enterobacter roggenkampii 1 0.6 1 0 

Enterobacter soli 1 0.6 1 0 

Enterobacter sp. n18-03635 1 0.6 1 0 

Enterococcus faecalis 7 4.4 5 2 

Enterococcus faecium 3 1.9 2 1 

Enterococcus gallinarum 1 0.6 1 0 

Escherichia coli 38 23.9 23 15 

Klebsiella michiganensis 2 1.3 1 1 

Klebsiella oxytoca 2 1.3 1 1 

Klebsiella pneumoniae 25 15.7 8 17 

Klebsiella variicola 2 1.3 2 0 

Micrococcus sp. Kbs0714 1 0.6 1 0 

Morganella morganii 4 2.5 4 0 

Proteus columbae 1 0.6 1 0 

Proteus mirabilis 14 8.8 14 0 

Proteus penneri 1 0.6 1 0 

Proteus vulgaris 1 0.6 1 0 

Pseudomonas aeruginosa 2 1.3 2 0 

Shewanella algae 1 0.6 1 0 

Staphylococcus aureus 30 18.9 15 15 

Staphylococcus capitis 1 0.6 1 0 

Staphylococcus epidermidis 1 0.6 1 0 

Staphylococcus haemolyticus 3 1.9 3 0 

Staphylococcus hominis 1 0.6 0 1 

a Multiple-replicon plasmid types in an isolate. 
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hese categories was for a single isolate that had (nearly) complete 

enome coverage, at sufficient sequencing depth. 

.2.2. Plasmid extraction and validation 

Raw reads assembly was repeated with Unicycler 0.4.7 [12] for 

ts ability as a “SPAdes optimiser” to produce long and, in the 

deal case, circular contigs. A total of 327 contigs from the bacterial 

nalysis pipeline were obtained, and 310 were predicted as circu- 

ar contigs. Assembly graphs were submitted to Gplas + plasflow for 

lasmid contigs prediction. Gplas 0.6.1 [13] + Plasflow 1.1 [14] take 

nto account the connected components in the assembly graph 

hen predicting plasmid contigs. The components predicted to be 

lasmid contigs were extracted from the assemblies and submitted 

o PlasmidFinder version 1.3 [15] for validation. 

.2.3. Identification of antibiotic resistance genes and virulence genes 

n plasmid replicon types 

To identify antibiotic resistance and virulence genes carried 

n plasmid replicons, the assembled putative plasmid sequences 

or each isolate were submitted to Resfinder 4.0 [16] and Vir- 

lenceFinder 1.4 [17] , respectively. In both Resfinder and Viru- 

enceFinder, 90% identity and 60% coverage settings to call a gene 
ere selected. w

Table 3 

Single-replicon plasmid types mediated both resistance and virulence genes 

Single-replicon Resistance genes Virulence g

IncFII aac(3)-IIa,aadA5, blaCTX-M15, dfrA17, qacE, sul1, tet(B) traT 

IncQ1 aph(3 ′ ’)-Ib,aph(6)-Id, blaTEM-1B, dfrA7, qacE, sul1, sul2 cea, focCsfa

IncFIA sitABCD, tet(A) iucC, iutA, 

IncFII(pRSB107) dfrA5, qacE, sul1, sul2 capU, iroN

386 
.2.4. Statistical analysis 

Stata 14 (STATA Corp., College Station, TX) was used for descrip- 

ive statistics and determination of the relationship between an- 

ibiotic resistance and virulence genes in plasmid replicons. 

. Results 

.1. Study population 

In total, 128 patients whose whole genome bacterial isolates 

ere analyzed were included in this study ( Table 1 ). One hundred 

wenty-eight patients were plasmid positive isolates. The mean 

ge in years (SD) was 46.2 (18.0). There were 77 male patients 

60.2%), 47 (36.7%) female patients, and 4 (3.1%) did not report 

ender identification. A total of 62 (48.4%) patients were admit- 

ed to a surgical ward, 9 (7.1%) to the surgical ICU, 52 (40.6%) to a

edical ward, 4 (3.1%) to the medical ICU ward, and 1 (0.8%) was 

issing ward admission identification. Eighty-seven (67.9%) speci- 

ens were swabs, 19 (14.8%) were stool, 13 (10.2%) were sputum, 

 (6.3%) were blood, and 1 (0.8%) specimen was missing identifi- 

ation. A total of 28 (21.9%) patients were diabetic, 6 (4.7%) were 

ancer patients, 6 (4.7%) were suffering from tuberculosis, and 2 

1.5%) were HIV positive. Of the 86 (67.2%) others, 61 (47.7%) had 

o underlying conditions, and 25 (19.5%) had other underlying con- 

itions. Of the wound swabs, twenty-four (18.8%) were from pa- 

ients with diabetic wounds, 11 (8.6%) were from burn wounds, 

0 (7.8%) were from post-surgical wounds, and 6 (4.6%) were from 

otor traffic accident wounds. Of the 77 (60.2%) others, 35 (27.3%) 

ad other wounds, and 42 (32.8%) had no wounds. 

Seventy-eight (60.9%) patients had no history of hospitalization, 

2 (32.8%) had a hospitalization history, and 8 (6.3%) were missing 

dentification. A total of 81 (63.3%) patients were transferred from 

nother hospital, 44 (34.4%) were not, and 3 (2.3%) were miss- 

ng identification. Among all participants, the median number of 

ays stayed in the hospital before the survey was 8 (4 -11.5) days 

 Table 1 ). 

.2. Proportion of bacterial species carrying plasmid replicon types 

A total of 283 whole genome bacterial sequences were ana- 

yzed. One hundred fifty-nine (56.2%) bacterial isolates were de- 

ected to carry plasmid replicons. Out of 159 plasmid replicons, 

3 non-repetitive plasmid replicons were predicted. Of 93 plas- 

id replicons, 48 (51.6%) occurred in isolates carrying single repli- 

ons, and 45 (48.4%) were in multiple-replicon isolates. Klebsiella 

neumoniae isolates were the most frequent carriers of multiple- 

eplicons (17, 28.3%), followed by S. aureus (15, 25.0%) and E. coli 

15, 25.0%). Escherichia coli isolates were the most common single- 

eplicon carriers (23, 23.2%), followed by S. aureus (15, 15.2%) and 

. mirabilis (14, 14.4%) ( Table 2 ). 

.3. Plasmid replicon types mediated resistance and virulence genes 

oncurrently 

A total of 30 isolates with plasmid replicons were identified 

o carry both resistance and virulence genes, of which 26 (86.7%) 

ere multiple-replicon plasmids and 4 (13.3%) were single-replicon 
enes 

E, focG, focI, iha, ireA, iucC, iutA, mchB, mchC, mchF, mcmA, papA_F48, papC, sat 

sitA 

, iss, iucC, iutA, mchB, mchC, mchF, mcmA, vat 
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Table 4 

Multiple-replicon plasmid types mediated both resistance and virulence genes 

IncFIB(K), IncFII(pKP91), IncR ARR-2, aac(3)-IIa, aac(6 ′ )-Ib-cr, aadA1, aph(3 ′ ’)-Ib, aph(6)-Id, 

blaCTX-M-15, blaOXA-1, catB3, cmlA1, dfrA14, ere(A), qacE, sul1, sul2, 

tet(A) 

traT 

IncFIB(K)(pCAV1099-114), IncHI2, IncHI2A, 

IncX3 

aac(6 ′ )-Ib-cr, aadA5, aph(3 ′ ’)-Ib, aph(6)-Id, blaCTX-M-15, blaOXA-1, 

blaTEM-1B, catB3, dfrA17, qacE, qnrB1, sul1, sul2, tet(A), tet(B) 

terC 

Col156, IncFIA, IncFIB(AP001918), 

IncFII(pRSB107) 

aac(3)-IIa,aac(6 ′ )-Ib-cr, aadA5, aph(3 ′ ’)-Ib, aph(6)-Id, blaCTX-M-15, 

blaOXA-1, catB3, dfrA17, mph(A), qacE, sul1, sul2, tet(A) 

hra, iha, iucC, iutA, sat, senB, traT 

IncFIB(K), IncFII(K), IncQ1, IncR ARR-2, aac(3)-IIa, aadA1, aph(3 ′ ’)-Ib, aph(3 ′ )-Ia, aph(6)-Id, 

blaCTX-M-15, blaTEM-1B, cmlA1, ere(A), qacE, qnrB1, sul1, sul2 

traT 

IncFIA(HI1), IncFIB(K), IncFII(Yp), IncHI2, 

IncHI2A, IncN3, pKP1433 

aac(3)-IIa, aac(6 ′ )-Ib-cr, aph(3 ′ ’)-Ib, aph(6)-Id, blaCTX-M-15, blaOXA-1, 

blaTEM-1B, catB3, qacE, qnrB1, sul1, sul2, tet(A) 

terC 

IncFIB(K), IncFII(K) aac(3)-IIa, aac(6 ′ )-Ib-cr, aph(3 ′ ’)-Ib, aph(6)-Id, blaCTX-M-15, blaOXA-1, 

blaTEM-1B, catB3, dfrA14, qnrB1, sul2, tet(A) 

traT 

IncHI2, IncHI2A aac(3)-IIa, aac(6 ′ )-Ib-cr, aph(3 ′ ’)-Ib, aph(6)-Id, blaCTX-M-15, blaOXA-1, 

blaTEM-1B, catB3, dfrA14, qnrB1, sul2, tet(A) 

terC 

Col156, IncFIA, IncFIB(AP001918), IncFII aac(3)-IIa, aac(6 ′ )-Ib-cr, aadA5, blaCTX-M-15, blaOXA-1, catB3, dfrA17, 

mph(A), qacE, sitABCD, sul1, tet(A) 

capU, fyuA, irp2, iucC, iutA, senB, sitA, 

traT 

IncFIB(pECLA), IncFII(pECLA), IncHI2, IncHI2A aac(3)-IIa, aac(6 ′ )-Ib-cr, aph(3 ′ ’)-Ib, aph(6)-Id, blaCTX-M-15, blaOXA-1, 

catB3, dfrA14, qnrB1, sul2, tet(A) 

terC 

Col156, IncFIA, IncFIB(AP001918) aac(6 ′ )-Ib-cr, aadA5, blaCTX-M-15, blaOXA-1, catB3, dfrA17, mph(A), 

qacE, sitABCD, sul1, tet(A) 

iucC,iutA ,senB,sitA , traT 

IncFIA, IncFIB(AP001918) aac(3)-IIa, aac(6 ′ )-Ib-cr, aadA5, blaCTX-M-15, blaOXA-1, catB3, dfrA17, 

qacE, sitABCD, sul1 

fyuA, irp2, iucC, iutA, sitA, traT 

IncFIA, IncFII aac(6 ′ )-Ib-cr, aadA5, blaCTX-M-15, blaOXA-1, catB3, dfrA17, mph(A), 

qacE, sul1, tet(A) 

afaA, afaC, afaD, iha, iucC, iutA, nfaE, 

papA_F43, sat, traT 

IncFIA, IncFIB(AP001918), 

IncFII(pAMA1167-NDM-5) 

aac(3)-IId, aadA2, blaTEM-1B, catA1, dfrA12, mph(A), qacE, qepA4, sul1 traT 

IncFIA(HI1), IncFIB(K), IncFII(pKP91), IncR aac(6 ′ )-Ib-cr, aph(3 ′ ’)-Ib, aph(6)-Id, blaCTX-M-15, blaOXA-1, blaTEM-1B, 

catB3, dfrA14, sul2 

traT 

IncFIA, IncFIB(AP001918), IncFII aac(6 ′ )-Ib-cr, aadA5, blaOXA-1, catB3, dfrA17, qacE, sul1, tet(B) traT 

IncFIB(K), IncFII(K), IncQ1 aph(3 ′ ’)-Ib, aph(3 ′ )-Ia,aph(6)-Id, blaTEM-1B, dfrA14, mph(A), sul2 traT 

Col156, IncFIB(AP001918), IncFII aph(3 ′ ’)-Ib, aph(6)-Id, blaTEM-1B, catA1, dfrA7, sul2, tet(D) afaA, afaB, afaC, afaD, afaE, hra, iha, iss, 

iucC, iutA, papA_F43, sat, senB, traT 

Col156, IncFIA, IncFIB(AP001918), IncQ1 aph(3 ′ ’)-Ib, aph(6)-Id, blaTEM-1B, dfrA17, sul2, tet(B) iha, iucC, iutA, papA_F43, sat, senB 

IncFIB(K)(pCAV1099-114), IncHI1B(pNDM-MAR) aph(3 ′ ’)-Ib,aph(6)-Id, dfrA15, qacE, sul1, sul2 terC 

IncFIB(K), IncFII(K), IncR aac(3)-IId, blaCTX-M-15, blaTEM-1B, dfrA30, sul2 traT 

IncFIB(K)(pCAV1099-114), IncHI1B(pNDM-MAR), 

IncR 

blaTEM-1B, dfrA5, qacE, sul1, tet(D) fyuA, irp2, traT 

IncFII(K), IncR aac(3)-IId, blaCTX-M-15, blaTEM-1B, dfrA30, sul2 traT 

IncFIB(AP001918), IncFII,IncQ1 aph(3 ′ ’)-Ib, aph(6)-Id, blaTEM-1B, dfrA5, sul2 cia, cvaC, etsC, hlyF, ireA, iroN, iss, iucC, 

iutA, mchF, ompT, papA_F11, papC, traT 

IncFIB(K)(pCAV1099-114), IncY sul2, tet(D) terC 

IncFIB(pHCM2), IncHI2, IncHI2A blaTEM-1B terC 

IncFIB(pB171), IncFII(pCoo) mdf(A) eae, espA, espF, nleB, nleC, perA, tir, traT 
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lasmids ( Tables 3 and 4 ). All four single-replicon plasmids were 

arried by E. coli . Resistance gene Sul1 was the most common 

cross three single-replicon plasmid types IncFII, IncQ1, and Inc- 

II(pRSB107). Virulence genes iucC and iutA were also the most 

ommon across three single-replicon plasmid types IncQ1, Inc- 

II(pRSB107), and IncFIA ( Table 3 ). 

Among the 26 multiple-replicon plasmids, 11 (42.3%) were car- 

ied by E. coli isolates, 10 (38.4%) by K. pneumoniae isolates, 2 

7.6%) by E. hormaechei isolates, 1 (3.9%) by the E. cloacae isolate, 

(3.9%) by the K. oxytoca isolate, and 1 (3.9%) by the K. michi- 

anensis isolate. Virulence gene traT was seen in 18 (69.2%) of 

he 26 multiple-replicon plasmids, followed by terC, which was 

dentified in 7 (26.9%) multiple-replicon plasmids. Regarding resis- 

ance genes in multiple-replicon plasmids, sul2 was observed in 17 

65.4%) replicon types, followed by blaTEM-1B in 15 (57.7%) repli- 

on types, followed by blaCTX-M-15 in 14 (57.7%) replicon types, 

nd blaOXA-1 in 13 (50.0%) replicon types ( Table 4 ). 

.4. Correlation between antibiotic resistance and virulence genes 

We explored the relationship between the number of antibi- 

tic resistance genes and virulence genes in 26 multiple-replicon 

ypes using Pearson correlation analyses. There was an inconclu- 

ive negative relationship between antibiotic resistance and viru- 
387 
ence genes existence in multiple-replicon plasmid types ( r = - 

.14, P > 0.05). 

. Discussion 

In the present study a high proportion of clinical bacterial iso- 

ates from inpatients at KCMC hospital was found to carry plas- 

id replicons. The present findings are in concordance with previ- 

us studies elsewhere [18] . The observed high carriage of plasmid 

eplicons by the analyzed isolates might plausibly be a reflection 

f resistance selection pressure due to high antibiotic exposure in 

ospital settings [19] . 

Escherichia coli isolates were the most prevalent carriers of 

ingle-replicon plasmid types followed by S. aureus and P. mirabilis. 

n other hand , K. pneumonia were the most prevalent carriers of 

ultiple-replicon plasmid types, followed by S. aureus and E. coli . 

he present study findings are in line with study results in a ter- 

iary care hospital in South India [18] . A possible explanation could 

e that the mentioned bacterial species have great medical rele- 

ance and thus are relatively highly isolated in hospital settings 

ompared to other species [ 20 , 21 ]. However, the present study 

ndings show a larger proportion of P. mirabilis carrying plasmid 

eplicons than the study in South India. This difference might be 

ue to the fact that the majority of the present study isolates 
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ere from wound specimens in which P. mirabilis were identified 

 22 , 23 ]. 

This study identified bacterial species with low plasmid repli- 

on prevalence including Enterobacter sp. n18-03635, Enterobacter 

obei, Klebsiella variicola and Klebsiella oxytoca. The study findings 

re consistent with other studies conducted in Canada, Greece, and 

exico [24–26] . Interestingly, the study observed other low plas- 

id replicon prevalence species that were reported elsewhere in 

oil samples, fish flesh samples [27–29] , and pigeon flesh speci- 

ens [30] , such as Micrococcus sp. Kbs0714, Enterobacter soli and 

roteus columbae . The observed species with low plasmid replicon 

revalence might be due to rarity and in most cases misidentifica- 

ion [ 31 , 32 ]. However, reports of bacterial species with low plasmid

eplicon prevalence indicate the possible emergence and transmis- 

ion of bacterial pathogens in humans, both in community and 

ospital settings [26] . 

Contrary to previous studies reporting IncF plasmid replicon 

ype in E. coli to often carry resistance and virulence genes [33] , 

he present study shows IncQ1 replicon type carried the highest 

umber of both resistance and virulence genes in E. coli , and the 

nding is in line with study conducted in Brazil [ 34 , 35 ]. This is

ossibly due to the fact that IncQ1 replicon type has high-level 

obility, stability, and replication at high copy number and is 

ransferred in a wide range of bacterial species through conjuga- 

ive plasmids [36–39] . 

In this study it was also identified that there are different 

ultiple-replicon plasmids ranging from two to seven plasmids. 

his is probably indicative of bacterial evolution to adapt and 

hrive in hospitals where they are excessively exposed to antimi- 

robials, antiseptics, and disinfectants [40–42] . A similar distribu- 

ion of some multiple-replicon plasmids in other regions carrying 

imilar or different antibiotic resistance and virulence genes was 

oted in the present study. This suggests resistant bacteria arising 

n one geographical area can spread countrywide/worldwide either 

y direct exposure or through the food chain,climate change, or the 

nvironment [6] . 

There was no significant relationship found in the present study 

etween numbers of antibiotic resistance and virulence genes in 

ultiple-replicon plasmids (r = - 0.14, P > 0.05), which would in- 

icate that acquisition of antibiotic resistance genes induces the 

oss of virulence factors. Previous studies support this study find- 

ng [43] , but do not agree with a study by Dionisio [44] . This dis-

ordance might be due to the fact that in other studies the rela- 

ionship between resistance and virulence genes was determined 

t the species level and were from gut and environmental samples 

33] . 

.1. Limitations 

We acknowledge there are a number of limitations in the 

resent study that warrant careful interpretation. There was no 

ntimicrobial susceptibility testing done that could provide in- 

ights on validating the presence of resistance and virulence genes 

nd actual resistance phenotypes. Bioinformatics analysis was per- 

ormed on Illumina short reads, which limited the ability to as- 

emble completed plasmid genomes, and consequently the abil- 

ty to ‘tease out’ individual plasmids from assembled contigs. We 

ntend to use the short read predictions as an initial screen- 

ng step for selecting isolates for long read sequencing and plas- 

id fusion analysis in the future. Assembly graphs were classi- 

ed by Gplas + PlasFlow for plasmid prediction. As for any machine 

earning-based approach or indeed any method based on infer- 

nce from similarity with known sequences, including tools such 

s PlasmidFinder, the predictive ability of the model is strongly de- 

endent on the data in its reference database or training set. A bias 
388
oward plasmid replicon types in well-studied organisms is there- 

ore likely. 

.2. Availability of data 

Sequences of the 30 isolates carrying resistance and virulence 

enes on plasmids have been deposited in the European Nucleotide 

rchive at EMBL-EBI under accession number PRJEB53343 ( https:// 

ww.ebi.ac.uk/ena/browser/view/PRJEB53343 ). Additional data an- 

lyzed during the current study are available from the correspond- 

ng author on reasonable request. 

. Conclusion 

There is a high proportion of isolates carrying resistance and 

irulence genes in plasmids, indicating a significant concern of 

MR development and spread in Tanzanian and other Low- and 

iddle-income Countries health care settings. With limited re- 

ources and health service capacities, the increasing AMR trends 

re expected to severely affect bacterial-associated mortalities and 

orbidities. 
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