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Abstract  The objective of the study was to determine the prevalence and antibiotic resistance phenotype of 
enteric bacteria from the municipal dumpsite. A qualitative survey of the dumpsite was conducted to identify types 
of solid wastes and nature of interaction on the dumpsite. Samples were collected from different type of solid waste, 
including domestic waste (Dom), solid biomedical waste (Biom), river sludge near the dumpsite (Riv) and faecal 
material of pigs scavenging on the dumpsite (FecD). A control sample was collected from faecal material of pigs 
initially reared indoor (FecI) and shifted to scavenging on the dumpsite (FecIF). Total genomic DNA was extracted, 
and the 16S rRNA gene was amplified, sequenced and used to study prevalence of enteric bacteria. The same sample 
was used to isolate enteric bacteria that were later tested to 8 different antibiotics for their susceptibility phenotype. 
Solid wastes are not sorted in Arusha municipal. There was high interaction between animals and humans on the 
dumpsite. A total of 219 enteric bacteria from 75 genera were identified. Escherichia sp and Shigella sp (12%), 
Bacillus sp (11%) and Proteiniclasticum (4%) were the predominant genera. Most of the Escherichia sp, Shigella sp 
and Bacillus were from FecD, while Proteiniclasticum spp was from Biom. Some isolates from FecD had 99% 
sequence similarity to pathogenic Escherichia furgosonii, Shigella sonnei, Enterococcus faecium and Escherichia 
coli O154:H4. Over 50% of the isolates were resistant to Penicillin G, Ceftazidime and Nalidixic Acid. 
Ciprofloxacin and Gentamycin were the most effective antibiotics with 81% and 79% susceptible isolates, 
respectively. Of all the isolates, 56% (45/80) were multidrug resistant. Escherichia sp and Bacillus sp (12 isolates 
each) constituted a large group of multidrug resistant bacteria. All Pseudomonas sp from Biom and FecD were 
multidrug resistant. There is high prevalence of antibiotic resistant enteric bacteria on the dumpsite. We report 
possible risks of spreading antibiotic resistant bacteria/genes from the dumpsite to clinical settings through animals 
and humans interacting on the dumpsite. This finding calls for a comprehensive research to study the shared 
resistome in bacteria from the environment, humans and animals using PCR and metagenomic based approaches to 
identify prevalence of known and capture new resistant genes. 
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1. Introduction 
Antibiotic resistant bacteria are extremely important to 

human and animals health, as it has become a major 
public health challenge globally [1,2,3]. Microbes have 
developed a mechanism to evade our drugs and the trend 
is worrisome as day’s go by. The knowledge on the origin 
of antibiotic resistance in the environment is key to public 
health owing to the growing importance of zoonotic 
diseases as well as the necessity for predicting emerging 
resistant pathogens [4]. Inappropriate use of antibiotics 
has been pointed out as one of the reasons which leads to 
selection and hence development of drug resistant 
microbes [5,6,7]. 

Poor solid waste management in many municipalities in 
developing countries [8,9,10] is associated with the 
accumulation of unsorted garbage in both undesignated 
areas and in common dumpsite. In African settings it is 
normal to find biomedical / pharmaceutical / antibiotic 
residues thrown into common dumpsites. The diverse 
microbes from domestic, biomedical and industrial wastes 
create a complex interface on dumpsites that favors 
bacterial changes. The variety of chemicals and drug 
residues on dumpsites are likely to create a selection 
pressure to microbes, hence generating resistant groups 
that could easily be carried by feral and domestic animals 
as well as humans often times interacting on dumpsite. 

Several studies have reported on the prevalence of 
bacteria of public health importance on municipal 
dumpsite [11,12,13]. Enteric bacterial isolates from the 
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dumpsite were reported to be resistant to commonly used 
antibiotics [12]. The fact that geographical conditions and 
types of waste generated in one location varies from any 
other; and since microbial proliferation depends on the 
geographical conditions and available nutrients; it is 
logical that public health risks caused by one municipal 
dumpsite cannot be the same elsewhere. 

Despite the poor solid waste management in most 
municipalities in Tanzania [14,15], no study has been 
done to screen for antimicrobial resistant bacteria from 
dumpsites. Only few studies on antimicrobial resistant 
bacteria have been reported in hospital settings. For 
example, a report on antimicrobial resistant bacteria in 
diabetic women by Lyamuya et al., [16], multiple resistant 
bacteria causing surgical site infection by Manyahi et al., 
[17], nasal carriage of methicilin resistant Staphylococcus 
by under-five in Tanzania [18] and antimicrobial resistant 
bacteria from urinary isolate. All of these studies were 
conducted in hospital settings. 

In this study, culture independent approach was used to 
identify enteric bacteria on the dumpsite and culture based 
method was used for isolation and study antimicrobial 
resistance phenotype. We communicate high prevalence 
of antibiotic resistant bacteria amidst a complex 
interaction of domestic and feral animals as well as 
humans on a municipal dumpsite. 

2. Materials and Methods 

2.1. Study Site and Sampling 
Site for this study was the Arusha municipal dumpsite 

in Tanzania, where waste from different urban sources is 
dumped. Sampling was done during March to June 2013 
whereby prior to sample collection, a qualitative survey 
was conducted to identify types of most common solid 
waste on the dumpsite. This comprised waste from 
households and markets (foods, pampers, clothes, etc.), 
chemical and biomedical waste (drug containers, used 
syringes), various plastics and used glassware, waste from 
abattoirs and brewers as well as fecal matter from animals 
scavenging on the dumpsite itself. Samples for this study 
were fresh droppings of pigs continuously scavenging on 
the dumpsite (FecD, n = 20), solid waste from different 
sources (domestic waste – Dom, n = 22; solid biomedical 
waste – Biom, n = 15) and run-off water sludge from 
adjoining nearby river (Riv, n = 10). As a control sample, 
fresh fecal materials collected from indoor reared pigs 
(FecI, n = 10) which were later shifted from indoor to free 
range on dumpsite (FecIF, n =15) were incorporated in 
this study. About 5g of the core of fresh droppings of pig 
as well as solid waste and sludge from the dumpsite were 
aseptically collected into sterile plastic containers and 
within one hour transported on ice to the molecular 
biology laboratory of the Nelson Mandela African 
Institution of Science and Technology, and stored at -20°C 
until further processing 

2.2. Ethical Statement 
This study was approved by the research committee of 

The Nelson Mandela African Institution of Science and 
Technology, in Arusha, Tanzania. Permits to sample the 
dumpsite was granted by the Arusha District Veterinary 

office and to transfer samples between laboratories, permits 
were given by the Zoosanitary inspectorate services of 
Tanzania, Arusha (VIC/AR/ZIS/0345) and Veterinary 
Services under the Ministry of Agriculture Livestock and 
fisheries of Kenya (RES/POL/VOL.XXIV/506). 

2.3. Extraction of Total DNA and PCR 
Amplification 

Total genomic DNA was extracted from about 250 mg 
of sample using PowerSoil™ DNA extraction kit 
(MOBIO Laboratories, Carlsbad, CA) as per 
manufacturer’s protocol. Quality of DNA; A260/A280 
and A260/A230) was verified with NanoDrop ND-2000c 
spectrophotometer (Thermo Scientific) and 
electrophoresis in 0.8 % agarose gel stained with GelRed 
(Biotium) and run in 0.5X TBE buffer and electrophoresis 
run at 80V for 30 minutes. Bacterial 16S rRNA gene 
fragments were amplified using universal primers 27F (5’-
AGAGTTTGATCCTGGCTCAG -3’) and 1492R (5’-
GGTTACCTTGTTACGACTT-3’) [19,20,21]. PCR 
reaction in 20 μl AccuPower® Taq PCR PreMix (Bioneer 
Corporation, Korea) composed of 0.8 μl of 10 pmol/μl 
each for the forward and reverse primers, 16.4 μl 
molecular grade water and 2 μl DNA template. 
Amplification was done in TC-PLUS PCR machine 
(TECHNE Scientific, UK) programme set at 94°C for 5 
min (initial denaturation), 35 cycles of 94°C for 30s, 57 oC 
for 30 s (annealing), 68°C for 1min (initial extension) and 
final extension at 68°C for 7 min. Amplicons were 
verified with gel electrophoresis in 1.5% agarose at 100 V, 
45 min and visualized using Gel documentation system 
(DIGIDOC-IT System, UK). The PCR products were 
purified using Qiagen kit (Qiagen, Valencia, CA) 
following manufacturer’s protocol 

2.4. 16S rRNA Gene Library Construction 
and Sequencing 

Five libraries corresponding to five sample sources, 
FecI, FecD, FecIF, Biom and Dom were constructed. Pure 
PCR product from the same sample source were pooled in 
equal concentration, ligated to vector pTZ57R/T 
(Fermentas, Lithuania) and then transformed DH5α™ 
strain of E. coli (Invitrogen, Life Technologies) as per 
manufacturer’s instructions. Transformed bacteria cells 
(150μl) were inoculated in LB agar composed of 100 mg/l 
Ampicillin, 40 μl of 20 mg/ml X-gal and 60 μl of 100 mM 
IPTG (Thermal Scientific) then incubated at 37 oC for 
24hrs (J.P Selecta, Spain). To ascertain presence and 
correct orientation of insert DNA, screening of 
recombinant clone was done using colony PCR. Briefly, 
individual white clones (90 – 100 per library) were 
resuspended into 20μl PCR master mix composed of 0.5 
μl each of the universal vector specific primers M13F (5‘-
CGCCAGGGTTTCCCAGTCA-3’) and M13R (5‘-
CAGGAAACAGCTATGAC-3’) [22] and the 
AccuPower® Taq PCR PreMix as explained above. PCR 
programme run in GeneAMP™ PCR system 9700 
(Applied Biosystems) set at 95°C for 3 min (initial 
denaturation) and 35 cycles of 94°C for 1 min, 55°C for 1 
min, 72°C for 2 min and final extension at 72°C for 15 
min. Amplicons, along with pTZ57R positive controls 
were visualized using 1.5% agarose gel electrophoresis. 
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Colony PCR products were purified using QiAquick® 
PCR kit as previously explained. The quality of DNA was 
further verified with NanoDrop reading and agarose gel 
electrophoresis. Clones with a single band (ninety from 
each library) and at a minimum of 25 ng/μl concentration 
were selected for sequencing. Bidirectional sequencing of 
16S rRNA nucleotide of was done using Automatic 
BigDye® terminator cycle chemistry (Applied Biosystems, 
USA). Forward and reverse M13 primers were 
independently used to generate forward and reverse 
sequences. Plasmid pGEM® (Promega, USA) was used as 
a control. Electrophoresis and data collection were 
performed on ABI 3730 DNA analyser (Applied 
Biosystems, USA). 

2.5. Sequence Data Analysis and Statistics 
The 16S rRNA sequences were edited, trimmed and 

assembled using CLC Main Workbench (v7.0.3, CLC Bio 
Aarhus, Denmark). Quality control was done using default 
setting (quality limit = 0.05, and residue ambiguous = 2). 
Trimmed sequences were assembled with minimum 
aligned read length of 50 at stringency = medium and 
conflict vote (A, C, G, T). Conflicts were resolved to 
generate consensus sequences. Mothur algorithm v1.34 
[23] was used for sequence alignment, chimera detection, 
distance calculation and clustering of sequences. Sequence 
identification was done using Naive Bayesian 
classification method in the Ribosomal Database Project 
(RDP) http://rdp.cme.msu.edu/ [24]. The differences in 
bacteria community between solid wastes were 
determined using the Parsimony, Libshuff and Unifrac 
analysis using the built-in commands in Mothur. A p value 
≤ 0.05 was considered significant for all comparisons. 

High quality representative sequences were deposited at 
the NCBI database and assigned with the GenBank 
accession numbers  KM 24477 to KM 244949. 

2.6. Phylogeny of Enteric Bacteria from the 
Dumpsite and Similarity to Known Pathogens 

The MEGA6 software [25] was used to build 
phylogenetic tree of enteric bacteria from different solid 
wastes. The 16S rRNA gene sequences of pathogenic 
bacteria gi|210063436| and gi|444439579| for 
Enterococcus faecium and Shigella sonnei, respectively 
were incorporated in the analysis. The 16S rRNA 
sequence of Methanosarcina sp (gi|37222667|) from 
Archaea was used as an out-group. Sequence alignment 
was done using ClustalW [26] and the evolutionary 
history was inferred using the Neighbor-Joining method 
[27]. The evolutionary distances were computed using the 
Jukes-Cantor method [28]. Sequence similarity of enteric 
bacteria isolate from the dumpsite to known pathogens 
was assessed using the BLASTN v2.2.31 at the NCBI 
GenBank database. All sequences with identity of ≥ 99% 
were considered highly similar to particular known bacteria. 

2.7. Isolation and Identification of Enteric 
Bacteria from the Dumpsite 

The same sample used for total genomic DNA 
extraction was used to isolate enteric bacteria. Based on 
morphology and colony characteristics, individual colonies 
were sub-cultured onto MacConkey agar to generate 

individual pure colonies. Isolation of gram positive 
fastidious bacteria was done using blood agar media 
constituting Tryptone Soy Agar (HiMedia Laboratories 
Ltd, India) and 8% sheep blood. Based on the nature of 
hemolysis (α, β or γ); individual colonies from primary 
culture were further sub-cultured to generate pure colonies. 

Initially, pure isolates were identified based on colony 
morphology and Gram staining according to Cowan and 
Steel method [29]. Further, identification was done using 
Analytical Profile Index kit (API 20E) specific for 
Enterobacteriacea and other non-fastidious gram negative 
rods (bioMerieux, France) as per manufacturer’s 
instructions. None Enterobacteriaceae isolates were 
identified based on their 16S rRNA sequences. Briefly, 
genomic DNA of pure isolate was extracted using ZR-
Bacteria DNA kit™ (Zymo Research, USA) as per 
manufacturer’s instructions. The quality of DNA, 
amplification of 16S rRNA, purification of amplicons, 
sequencing and identification of isolates through sequence 
similarity was done as previously explained 

2.8. Antimicrobial Susceptibility Testing 
The Kirby-Bauer disk diffusion technique [30] was 

used to study the antimicrobial susceptibility of bacteria 
isolates from the dumpsite. The commercially prepared 
antibiotic discs, Cefotaxime (CTXM, 30μg), Cefoxitin 
(FOX, 30ug), Penicillin G (P, 10μg), Amoxycillin / 
Clavulanic acid (AMC, 20/10μg) and Ceftazidime (CAZ, 
30μg) in group of β-lactam antibiotics; and Ciprofloxacin 
(CIP, 5μg) and Nalidixic acid (NA, 30μg) in group of 
quinolones; and Gentamicin (CN, 10μg) in aminoglycoside 
antibiotics were used in this study. All antibiotic discs 
were purchased from (Oxoid, Basingstoke UK). An 
overnight culture of pure isolates in Tryptone Soy Broth 
(TSB)  (HiMedia Laboratories Pvt, India) was suspended 
into a sterile Peptone water (HiMedia Laboratories Pvt, 
India). Interpretation of antimicrobial resistance 
phenotype was performed as per Clinical Laboratory 
Standards Institute guide [31]. Isolates were categorized as 
resistant (R), intermediate resistant (IR) and susceptible 
(S). Excel program was used to prepare summary plots of 
resistance profile of different enteric bacteria isolates. 

3. Results 

3.1. Qualitative Survey of the Dumpsite 
A survey of the dumpsite found different types of solid 

wastes from domestic, industries, markets and 
hospitals/pharmaceuticals thrown on the same dumpsite 
without prior sorting. Wastes comprised of biomedicals 
such as used syringes, swabs, expired drugs and used 
catheters; diapers, dead animals, food remnants, cosmetics 
and torn clothes from domestic; used bottles, package 
material and other industrial wastes. Domestic animals 
such as pigs, goats, and cattle, dogs, as well as chickens 
were scavenging on dumpsite. Wild animals such as 
rodents, snakes and birds like crows were seen on 
dumpsite. Humans, apart from the dumpsite workers; 
women and children were seen searching for recyclable 
materials on the dumpsite. Close to the dumpsite there is 
river Burka, to which garbage and non-solid waste leaches 
during rains. Figure 1 shows the dumpsite scenery. 
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Figure 1. Dumpsite interaction and types of solid waste on the 
dumpsite. A - Truck offloading garbage on the dumpsite and people 
searching for valuable recyclable materials; B - domestic free range pigs 
scavenging on garbage; C - Diapers from domestic waste; D - used 
syringes from hospitals; E - cattle drinking water from the river near the 
dumpsite 

3.2. Prevalence of Enteric Bacteria, Phylogeny 
and Similarity to Known Pathogens 

A total of 218 enteric bacteria from both isolates and 
cloned amplicons of 16S rRNA were identified. These bacteria 
were from 75 different genera. Escherichia/Shigella 
(12%), Bacillus (11%) and Proteiniclasticum (4%) were 
the most abundant genera. It was also noted that 
Escherichia/Shigella and Bacillus were mostly contributed 
by faecal materials of pigs scavenging on dumpsite (FecD) 
(8% and 4%, respectively) while Proteiniclasticum 
dominated in Biom waste (Supplementary file 1). 

 
Figure 2. Phylogenetic tree of faecal bacteria from pigs under 
different management system. Evolutionary relationship of faecal 
bacteria of pigs under different management system was established 
using Mega6 software. The bootstrap values (expressed as percentages of 
100 replications) are shown at branch points; only values above 50% are 
indicated. The scale bar represents substitutions per 100 nucleotides. 
Green triangles are bacteria sequences from indoor reared pigs; Blue-
diamond are bacteria sequences from pigs recently shifted from indoor to 
free range on dumpsite, and Red - rectangles are bacteria sequences from 
pigs continuously scavenging on the dumpsite. The black - circles with 
GenBank accession numbers gi|210063436| and gi|444439579| are 
reference sequences of Enterococcus faecium and Shigella sonnei, 
respectively, both known to be pathogenic. The yellow – circle is 
Methanosarcina sp from Achaea (gi|37222667|) which was used as an 
out-group 

Due to the importance of Escherichia and Shigella to 
public health; further analysis of enteric bacteria from pigs 
scavenging on the dumpsite was performed. In this 
analysis phylogenetic relationship of sequences of enteric 
bacteria from pigs scavenging on the dumpsite was 
compared to those from indoor reared, and pigs shifted 
from indoor to free range on the dumpsite. The 
phylogenetic tree (Figure 2) revealed three major clusters 
of bacteria. The first cluster (A) was composed of 
bacterial sequences exclusively found in indoor reared 
pigs (FecI). The second and third clusters (B and C) 
comprised of sequences originating from indoor, pigs 
shifted from indoor to free range as well as pigs 
permanently under free range. In these clusters at least two 
bacterial sequences from the same source clustered 
together. Of interest, sequences of both Enterococcus 
faecium and Shigella sonnei; well-known human 
pathogens fell into cluster B, and moreover, fell closer to 
sequences originating from FecD pigs.  

Further, implication of sequence similarities shown 
between the two reference pathogenic bacteria 
(Enterococcus faecium and Shigella sonnei) with enteric 
bacteria from the FecD pigs was investigated. On 
interrogation of the 16S rRNA gene sequences at NCBI 
database with bacterial sequences generated in this study, 
17 sequences of bacteria with high similarity to Shigella 
sonnei, Escherichia furgosonii, Escherichia faecium and 
Escherichia coli 0157:H7 (Table 1) all of them known as 
important human and animal pathogens. 

Table 1. Similarity of bacterial sequences from pigs scavenging on 
dumpsite to known pathogens 

This work* From literature 

Accession # # of 
clones Description Accession 

# % ID Ref 

KM244771 6 S. sonnei NR_074894.1 99 [32] 

KM244773 5 E. furgosonii NR_074902.1 99 [33] 

KM244781 3 *E. faecium NR_102790.1 99 [34] 

KM244796 3 E.coli 
O157:H7 NR_074891.1 99 [35] 

 *E - Enterococcus, E- Escherichia, S – Shigella. 

3.3. Antimicrobial Sensitivity Test 

 
Figure 3. Antimicrobial resistance phenotypic profile of bacteria 
isolates. Percentage of enteric bacterial isolates with different degrees of 
resistance; P - Penicillin G, CAZ - Ceftazidime, CTXM - Cefotaxime, 
AMC - Amoxycillin /Clavulanic, CN - Gentamicin, NA - Nalidixic Acid, 
FOX- Cefoxitin, CIP - Ciprofloxacin. Blue bars represent resistant 
isolates and red bars represent isolates with intermediate resistance 
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Eighty pure bacteria isolates from different solid wastes 
were used for antimicrobial sensitivity test. Phenotypic 
profile analysis revealed that, over 50% of all the isolates 
were resistant to Penicillin G, Ceftazidime and Nalidixic 
Acid antibiotics (Figure 3). While for penicillin G most 
bacteria showed resistance (92% of all isolates); 
Ciprofloxacin and Gentamycin were the most effective 
antibiotics with 81% and 79%, respectively susceptible 
isolates. When the isolates exhibiting intermediate and 
total resistance are put together, it was found that, in the 
third generation cephalosporin β-lactam antibiotics CAZ 
and CTXM, resistance was evident in over 60% of all 
isolates tested (61% for CTXM and 62% for CAZ). 

Table 2. Multidrug resistance profile of bacteria from the dumpsite 
Escherichia sp 
# of antibiotics Resistance pattern #of isolates 
2 P, NA 4 
3 P,CAZ, NA 2 
3 CIP, P, NA 1 
4 CIP,CAZ, P,NA 1 
4 P, CAZ, CTXM, NA 1 
5 AMC, P, CAZ, CTXM, FOX 1* 
6 CN, AMC, P, CAZ, FOX, NA 1* 

Shigella sp 
2 P, NA 1 
3 P, CAZ, NA 1 
4 P, CAZ, CTXM, NA 1*r 
5 AMC, P, CAZ, CTXM, NA 1*a 
6 AMC, CAZ, P, CTXM, FOX ,NA 1*b 
Pseudomonas sp 
2 P, NA 1 
3 P, CAZ, CTXM 1 
3 CIP, CAZ, NA 1 
4 CIP, P, CAZ, NA 2** 
5 AMC, P, CAZ, CTXM, NA 1 *** 
6 AMC, P, CAZ, CTXM, FOX, NA 1*** 
Serratia sp 
3 P, CAZ, NA 1 
7 CIP, CN, AMC, P, CAZ, CTXM, NA 1*y 

   
Enterococcus sp 
2 CIP, NA 1 
3 P, CAZ, NA 1*z 

   
Enterobacter sp 
4 P, CAZ, CTXM, FOX 1 
Bacillus sp 
2 P, CAZ 1 
2 P, NA 2 
3 P, CAZ, CTXM 1 
3 P, CAZ, NA 1 
4 P, CAZ, CTXM, FOX 4 
5 AMC, P, CAZ, CTXM, FOX 1x* 

5 P, CAZ, CTXM, FOX, NA 1x* 

5 AMC, P, CAZ, CTXM, FOX 1x* 

6 AMC, P, CAZ,CTXM, FOX, NA 1x* 

Multidrug resistance expressed by bacterial isolates from different solid 
waste. Isolates expressing resistance to more than four antibiotics are 
shown with an asterisk; * Escherichia coli isolated from faecal matter of 
indoor reared pigs; *r Shigella sp isolates from the river near the 
dumpsite; *a Shigella flexneri isolated from faecal material of pigs 
scavenging on dumpsite; ** Pseudomonas luteola from faecal material 
of pigs scavenging on dumpsite; *** Pseudomonas luteola from solid 
biomedical waste. *y Serratia rubidae isolated from solid biomedical 
waste, *z Enterococcus casseliflavus isolated from pigs scavenging on 
dumpsite; x* Bacillus sp isolated. 

Further, phenotypic profiling revealed prevalence of 
multidrug resistant bacteria on the dumpsite (Table 2). Of 
all the isolates, 56% (45/80) were resistant to at least two 
antibiotics. Some isolates were resistant to more than four 
antibiotics. For example, Escherichia coli from faecal 
material of pigs scavenging on dumpsites was resistant to 
Gentamycin, Amoxy/Clavulanic, Penicillin G, 
Ceftazidime, Cefoxitin and Nalidixic Acid; Shigella 
flexneri and Pseudomonas luteola both from faecal 
material of pigs were resistant to Amoxycillin / Clavulanic 
Acid, Penicillin G, Ceftazidime, Cefotaxime, Cefoxitin 
and Nalidixic acid. Pseudomonas luteola from solid 
biomedical wastes and faecal material of pigs scavenging 
on dumpsite were multidrug resistant. Interestingly, 
multidrug resistant bacteria were also found in faecal 
material of pigs reared indoors. 

4. Discussion  
This study determined the prevalence and antibiotic 

resistance profile of enteric bacteria from a municipal 
dumpsite in Arusha, Tanzania. High prevalence of 
bacteria resistant to most commonly used antibiotics was 
revealed on the dumpsite. Since the dumpsite was 
composed of solid waste from diverse sources such as 
hospitals, domestic and industrials, it is therefore expected 
that microbes found therein were brought to the dumpsite 
along with solid wastes from the respective sources. The 
fact that antimicrobial resistant genes are common in 
environments [36,37,38] and play an important role for 
bacterial survival; the high prevalence of multidrug 
resistant bacteria on the dumpsite is probably due to a 
multitude of biological as well as ecological factors.  

The complex interaction of microbes from different 
sources on the dumpsite creates a favourable environment 
for genetic material exchange between microbes, hence 
the possible prevalence of antibiotic resistant bacteria 
detected in this study. The fact that most of Escherichia 
coli and Shigella sp were multidrug resistant implies that 
there is possibility of these bacteria to harbour plasmids 
with several genes conferring resistance to a broad array 
of antibiotics. This finding is in agreement with previous 
studies where Escherichia coli from animals previously 
treated with antibiotics were found to harbour genes 
conferring resistance to β-lactam antibiotics [39,40]. The 
presence of multidrug resistant bacteria on dumpsite may 
also be attributed to by the selection pressure from variety 
of drugs on dumpsite and the noted high interaction 
between microbes from different sources. 

The study has shown that multidrug resistant 
Escherichia coli were also detected in faecal material of 
indoor reared pigs. By sampling faecal material of pigs 
managed differently from those scavenging on the 
dumpsite we anticipated to confirm whether pig 
management has a significant impact on composition of 
faecal enteric bacteria. This finding is similar to previous 
reports [40,41,42], where resistant genes to given 
antibiotics were found in animal microbiota in the absence 
of treatment with particular antibiotics. This suggest that 
probably there is a broad spread of yet unknown resistant 
genes in both an environment and animal, hence further 
research is needed. 
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The prevalence of multidrug resistant Pseudomonas sp 
mostly from solid biomedical waste is also reported by 
Odjadjare et al., [43] in effluent of municipal waste water 
treatment plant. Pseudomonas is associated with diseases 
in humans and animals, for example, Casalta et al., [44] 
isolated P. luteola in patient with prosthetic valve 
endocarditis, Benoit reported chromosome encoding β- 
lactamase gene in Pseudomonas luteola; hence their 
resistance to β-lactam antibiotics. Other researchers 
reported the potential of Pseudomonas luteola in 
degrading natural and man-made chemicals with their 
extracellular enzymes lipase and amylase [45]. The fact 
that these multidrug resistant bacteria were found on 
dumpsite, suggests that there is high chance of spreading 
these pathogens and the associated resistant genes to 
humans and animals. Shigella sp from the river near the 
dumpsite was among the multidrug resistant isolate. As 
documented in this study (Figure 1), the river near the 
dumpsite is used by local people around the dumpsite for 
domestic chores and their animals. People using the river 
have a high risk of contracting multidrug resistant bacteria. 
The study further speculates the risk of spreading resistant 
genes from the dumpsite to a larger population through the 
river. 

 Bacillus species was the second most abundant group 
after Escherichia sp. This group expressed high multidrug 
resistance to most of the antibiotics. Gentamycin was the 
most effective antibiotics to Bacillus sp with most isolates 
susceptible. Similarly, previous studies reported multidrug 
resistant Bacillus sp in municipal waste and tanneries, and 
they associated it with presence of mega plasmid with 
resistant genes [46,47]. The fact that Bacillus sp is 
associated with several diseases of humans and animals 
[48,49,50,51], their prevalence and multidrug resistance 
shown in this study, signifies presence of human and 
animal health risks on the dumpsite. 

Many of the known antibiotic resistance genes are 
found on transposons and plasmids, which can be 
mobilized and transferred to other bacteria of the same or 
different species through horizontal gene transfer [52,53]. 
The fact that there is high diversity of antimicrobial 
resistant bacteria on dumpsite, and that animals and 
humans are commonly interacting on dumpsite; there is 
high chance of resistant genes from the dumpsite to be 
transferred to previously susceptible bacterial groups in 
human and animal populations through horizontal gene 
transfer. This situation could further broaden the spectrum 
of resistant pathogenic bacteria in the environment.  

The presence of high interaction between people 
working on dumpsite without any protective gear and 
domestic animals scavenging on dumpsite; presents a 
viable interface with high risks of contacting and 
spreading resistant genes from the dumpsite to the public. 
This could be through food animals scavenging on 
dumpsite, shedding of the infected faecal material on the 
environment and through people working on dumpsite.  

In Tanzania, the prevalence of antibiotic resistant 
bacteria has been reported mostly in hospital settings. 
Reported cases in Tanzania includes, the prevalence of β-
lactamase producing gram negative bacteria of 
nosocomial origin in hospital [54], antimicrobial 
resistance in urinary isolates [55], and antibiotic resistant 
bacteria in diabetic women’s [16], nasal carriage of 
methicillin resistant Staphylococcus to under 5 children 

[18] and antimicrobial resistant isolates from blood stream 
[56]. Most of these studies reported Escherichia coli as the 
most prominent aetiological agent with high resistance to 
most of the drugs. As the case here, all studies were 
conducted in hospital settings; implying that little is 
known of the prevalence of the antimicrobial resistant 
bacteria and other pathogens in the environment and the 
possible association to growing antimicrobial resistance 
levels in Tanzania. 

The study has also found high sequence similarity of 
bacteria from the dumpsite to known pathogens, including 
Shigella sonnei, Enterococcus faecium, Enterococcus 
furgosonii and Escherichia coli. Public health risks 
associated with these bacteria have been extensively 
reported and includes food borne diseases outbreaks 
caused by Shigella sonnei [57,58]; nosocomial infections 
by Enterococcus [59,60] as well as various food-borne 
diseases by Escherichia coli [61,62] . This finding suggest 
that probably these pathogens are present on the dumpsite, 
and the fact that there is high interaction between animals 
and human on the dumpsite they could easily be spread to 
human setting through food animals as well as people 
working on the dumpsite.  

The prevalence of antibiotic resistant bacteria (with 
56% multidrug resistant) on dumpsite, which represents 
an ‘end-point’ of biodegradable and unrecyclable garbage 
from diverse human activities has demonstrated the 
microbial complexity on a municipal dumpsite and shows 
the role of such dumpsites as hotspots for emergence of 
new pathogens. 

5. Conclusion 
This study has shown high prevalence of antibiotic 

resistant enteric bacteria on the dumpsite. Some isolates 
have high similarity to known pathogens. This indicates a 
possible risk of spreading of these pathogens and resistant 
genes from the dumpsite to human or clinical setting. The 
finding calls for further research to study the shared 
resistome in bacteria from the environment, humans and 
animals using functional metagenomic approach to 
capture known and new resistant genes. 
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Supplementary file 1 
Table S1. Bacterial genera identified in solid biomedical waste from the dumpsite 

S/N Sample/Clone Genera % ID 
Ref K12 Escherichia/Shigella 100 
1 Biom28 Alkalitalea 99 
2 Biom60 Alkalitalea 97 
3 Biom81 Aquisphaera 84 
4 Biom123 Bacillus 100 
5 Biom125 Bacillus 100 
6 Biom127 Bacillus 100 
7 Biom131 Bacillus 100 
8 Biom135 Bacillus 76 
9 Biom139 Bacillus 100 
10 Biom145 Bacillus 100 
11 Biom17 Bacillus 100 
12 Biom70 Cellvibrio 100 
13 Biom16 Derxia 33 
14 Biom6 Derxia 56 
15 Biom2 Enterococcus 100 
16 Biom24 Flavisolibacter 98 
17 Biom19 Flavobacterium 88 
18 Biom56 Luteimonas 100 
19 Biom142 Lysinibacillus 97 
20 Biom143 Lysinibacillus 97 
21 Biom146 Lysinibacillus 100 
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22 Biom149 Lysinibacillus 71 
23 Biom39 Massilia 100 
24 Biom83 Micrococcineae 96 
25 Biom22 Oligella 100 
26 Biom53 Parapusillimonas 25 
27 Biom78 Peptoniphilus 66 
28 Biom3 Planomicrobium 83 
29 Biom15 Proteiniclasticum 100 
30 Biom35 Proteiniclasticum 99 
31 Biom37 Proteiniclasticum 100 
32 Biom38 Proteiniclasticum 100 
33 Biom61 Proteiniclasticum 100 
34 Biom66 Proteiniclasticum 100 
35 Biom69 Proteiniclasticum 100 
36 Biom74 Proteiniclasticum 100 
37 Biom80 Proteiniclasticum 99 
38 Biom12 Pseudomonas 99 
39 Biom77 Rhodoplanes 55 
40 Biom68 Roseicyclus 11 
41 Biom122 Salirhabdus 40 
42 Biom86 Stenotrophomonas 100 
43 Biom14 Thauera 100 
44 Biom30 Tissierella 61 

Table S2:  Bacterial genera identified in domestic solid waste from the dumpsite 
S/N Sample Genera % ID 

1 Dom16 Acinetobacter 100 

2 Dom23 Acinetobacter 100 

3 Dom44 Acinetobacter 100 

4 Dom7 Allochromatium 99 

5 Dom52 Atopostipes 100 

6 Dom113 Bacillus 100 

7 Dom114 Bacillus 100 

8 Dom132 Bacillus 100 

9 Dom37 Candidatus Hydrogenedens 100 

10 Dom47 Clostridium XI 99 

11 Dom11 Fusibacter 100 

12 Dom28 Kurthia 58 

13 Dom40 Leuconostoc 100 

14 Dom38 Meniscus 31 

15 Dom5 Mesorhizobium 100 

16 Dom54 Mesorhizobium 58 

17 Dom48 Oceanibaculum 58 

18 Dom30 Phascolarctobacterium 94 

19 Dom36 Pontibacter 100 

20 Dom8 Pontibacter 100 

21 Dom35 Proteiniclasticum 100 

22 Dom111 Pseudomonas 100 

23 Dom12 Saccharofermentans 75 

24 Dom31 Saccharophagus 18 

25 Dom19 Sphingomonas 100 

26 Dom26 Sporacetigenium 100 

27 Dom129 Staphylococcus 100 

28 Dom34 Thalassolituus 100 

29 Dom4 Tindallia 74 

30 Dom39 Treponema 100 
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Table S3: Bacterial genera identified in faecal material of pigs scavenging on the dumpsite 
S/N Sample Genera % ID 

1 FecD12 Bacillus 100 

2 FecD128 Bacillus 100 

3 FecD26 Bacillus 84 

4 FecD50 Bacillus 100 

5 FecD60 Bacillus 100 

6 FecD60 Bacillus 100 

7 FecD84 Bacillus 100 

8 FecD85 Bacillus 100 

9 FecD87 Bacillus 86 

10 FecD91 Bacillus 100 

11 FecD99 Bacillus 81 

12 FecD133 Brevibacillus 48 

13 FecD16 Clostridium IV 45 

14 FecD83 Clostridium sensu stricto 100 

15 FecD17 Clostridium XI 99 

16 FecD19 Clostridium XI 75 

17 FecD7 Clostridium XI 100 

18 FecD120 Enterococcus 100 

19 FecD144 Enterococcus 100 

20 FecD35 Enterococcus 100 

21 FecD77 Enterococcus 100 

22 FecD86 Enterococcus 100 

23 FecD1 Escherichia/Shigella 100 

24 FecD21 Escherichia/Shigella 100 

25 FecD3 Escherichia/Shigella 100 

26 FecD3 Escherichia/Shigella 99 

27 FecD34 Escherichia/Shigella 100 

28 FecD44 Escherichia/Shigella 100 

29 FecD48 Escherichia/Shigella 100 

30 FecD50 Escherichia/Shigella 100 

31 FecD51 Escherichia/Shigella 100 

32 FecD61 Escherichia/Shigella 100 

33 FecD63 Escherichia/Shigella 99 

34 FecD81 Escherichia/Shigella 100 

35 FecD82 Escherichia/Shigella 100 

36 FecD83 Escherichia/Shigella 100 

37 FecD87 Escherichia/Shigella 99 

38 FecD93 Escherichia/Shigella 100 

39 FecD97 Escherichia/Shigella 100 

40 FecD75 Fusobacterium 66 

41 FecD37 Kandleria 98 

42 FecD13 Lachnospiracea_incertae_sedis 71 

43 FecD10 Lactobacillus 100 

44 FecD88 Mitsuokella 100 

45 FecD58 Oscillibacter 48 

46 FecD33 Paenibacillus 99 

47 FecD40 Planococcaceae_incertae_sedis 96 

48 FecD43 Planococcaceae_incertae_sedis 94 

49 FecD14 Sporacetigenium 63 
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Table S4: Bacteria genera identified in faecal materials of indoor reared pigs 
S/N Sample Genera % ID 

1 FecI11 Acetivibrio 68 

2 FecI16 Anaerorhabdus 39 

3 FecI17 Bacillus 100 

4 FecI19 Bacillus 100 

5 FecI2 Clostridium IV 80 

6 FecI20 Clostridium IV 84 

7 FecI21 Clostridium sensu stricto 100 

8 FecI23 Clostridium sensu stricto 100 

9 FecI27 Clostridium sensu stricto 98 

10 FecI27 Clostridium sensu stricto 98 

11 FecI29 Clostridium sensu stricto 100 

12 FecI30 Coprobacillus 9 

13 FecI30 Escherichia/Shigella 100 

14 FecI32 Escherichia/Shigella 100 

15 FecI34 Escherichia/Shigella 100 

16 FecI38 Escherichia/Shigella 100 

17 FecI39 Escherichia/Shigella 100 

18 FecI41 Escherichia/Shigella 100 

19 FecI41 Escherichia/Shigella 100 

20 FecI43 Escherichia/Shigella 100 

21 FecI43 Escherichia/Shigella 100 

22 FecI44 Escherichia/Shigella 100 

23 FecI45 Eubacterium 39 

24 FecI46 Gemmiger 57 

25 FecI47 Lachnospiracea_incertae_sedis 79 

26 FecI48 Lachnospiracea_incertae_sedis 97 

27 FecI51 Lachnospiracea_incertae_sedis 74 

28 FecI54 Lactobacillus 100 

29 FecI58 Lactobacillus 100 

30 FecI59 Lactobacillus 100 

31 FecI6 Lactobacillus 100 

32 FecI61 Lactobacillus 100 

33 FecI64 Lactobacillus 100 

34 FecI67 Lactobacillus 100 

35 FecI68 Megasphaera 100 

36 FecI7 Megasphaera 100 

37 FecI72 Oscillibacter 45 

38 FecI79 Oscillibacter 76 

39 FecI84 Oscillibacter 100 

40 FecI86 Prevotella 99 

41 FecI93 Roseburia 100 

42 FecI97 Tannerella 63 

43 FecI98 Tannerella 63 
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Table S5: Bacterial genera identified in faecal material of pigs shifted from indoor to free range on the dumpsite 

S/N Sample Genera % ID 

1 FecIF15 Anaerotruncus 31 

2 FecIF75 Anaerovorax 95 

3 FecIF76 Anaerovorax 90 

4 FecIF101 Bacillus 100 

5 FecIF53 Bacillus 100 

6 FecIF39 Clostridium IV 36 

7 FecIF71 Clostridium IV 90 

8 FecIF91 Clostridium IV 48 

9 FecIF92 Clostridium IV 32 

10 FecIF19 Clostridium sensu stricto 100 

11 FecIF56 Clostridium sensu stricto 100 

12 FecIF2 Clostridium XI 100 

13 FecIF35 Clostridium XI 64 

14 FecIF41 Clostridium XI 100 

15 FecIF42 Clostridium XI 100 

16 FecIF46 Clostridium XI 100 

17 FecIF60 Coriobacterineae 72 

18 FecIF43 Escherichia/Shigella 100 

19 FecIF55 Escherichia/Shigella 100 

20 FecIF58 Escherichia/Shigella 100 

21 FecIF62 Escherichia/Shigella 100 

22 FecIF80 Escherichia/Shigella 100 

23 FecIF92 Escherichia/Shigella 100 

25 FecIF29 Oscillibacter 35 

26 FecIF36 Oscillibacter 21 

27 FecIF95 Oscillibacter 93 

28 FecIF90 Papillibacter 32 

29 FecIF86 Prevotella 95 

30 FecIF96 Prevotella 99 

31 FecIF3 Prolixibacter 10 

32 FecIF32 Rikenella 46 

33 FecIF33 Rikenella 46 

34 FecIF58 Rikenella 34 

35 FecIF61 Rikenella 22 

36 FecIF64 Rikenella 72 

37 FecIF63 Roseburia 39 

38 FecIF1 Ruminococcus 79 

39 FecIF82 Ruminococcus 100 

40 FecIF83 Subdivision5_genera_incertae_sedis 70 

41 FecIF12 Tannerella 63 

42 FecIF14 Tannerella 68 

43 FecIF47 Treponema 94 
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Table S6: Bacterial genera identified in river sludge near the dumpsite 
S/N Sample Genera % ID 

210 Riv137 Bacillus 99 

211 Riv138 Bacillus 100 

212 Riv1 Bacillus 100 

213 Riv2 Bacillus 100 

215 Riv105 Escherichia/Shigella 99 

216 Riv4 Escherichia/Shigella 97 

217 Riv5 Lysinibacillus 59 

218 Riv6 Lysinibacillus 100 

219 Riv106 Obesumbacterium 17 
 
 


