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Agriculture is considered the backbone of Tanzania’s economy, with more 
than 60% of the residents depending on it for survival. Maize is the country’s 
dominant and primary food crop, accounting for 45% of all farmland production. 
However, its productivity is challenged by the limitation to detect maize diseases 
early enough. Maize streak virus (MSV) and maize lethal necrosis virus (MLN) are 
common diseases often detected too late by farmers. This has led to the need 
to develop a method for the early detection of these diseases so that they can 
be treated on time. This study investigated the potential of developing deep-
learning models for the early detection of maize diseases in Tanzania. The 
regions where data was collected are Arusha, Kilimanjaro, and Manyara. Data 
was collected through observation by a plant. The study proposed convolutional 
neural network (CNN) and vision transformer (ViT) models. Four classes of 
imagery data were used to train both models: MLN, Healthy, MSV, and WRONG. 
The results revealed that the ViT model surpassed the CNN model, with 93.1 
and 90.96% accuracies, respectively. Further studies should focus on mobile 
app development and deployment of the model with greater precision for early 
detection of the diseases mentioned above in real life.
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1 Introduction

Tanzania’s economy is predominantly centered around agriculture, and the country gains 
from a wide range of agricultural activities, such as livestock, essential food crops, and many 
cash crops (Oxfordbusinessgroup, 2018). In Tanzania, agricultural output accounts for about 
29.1% of the country’s Gross Domestic Product (GDP). It also employs 67% of the labor force, 
a paramount supplier of food, raw materials for industry, and foreign exchange (International 
Trade Administration, 2021). Moreover, as agronomy production is far too low, food demand 
is increasing dramatically (Dewbre et al., 2014). Farmers, scientists, researchers, analysts, 
specialists, and the government are working hard to enhance agricultural production to meet 
growing needs (Panigrahi et al., 2020). However, crop diseases continue to be a challenge 
affecting major food security crops like maize (Savary and Willocquet, 2020). Maize is a very 
crucial and important crop in Tanzania, contributing significantly to the country’s agricultural 
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sector (Maiga, 2024). However, maize leaf diseases such as Maize 
Streak Virus and Maize Lethal Necrosis, pose a severe threat to maize 
production with the potential to reduce yield (Shepherd et al., 2010; 
Mahuku et al., 2015; Kiruwa et al., 2020). Early detection of these 
diseases is crucial for implementing timely preventive measures and 
mitigating yield losses (Boddupalli et al., 2020; Haque et al., 2022). 
Traditional visual analysis methods for disease detection in crops are 
prone to errors, labor-intensive, and time-consuming. Moreover, these 
methods have been observed to identify diseases at a later stage, 
potentially leading to more harm to the crops (Toseef and Khan, 2018; 
Gong and Zhang, 2023). These traditional methods rely heavily on the 
expertise of farmers, plant pathologists, and agriculture experts. 
Additionally, the subjective nature of these methods can lead to 
inconsistent diagnoses among different experts.

Recently, technology has been used to improve yields in 
agriculture, whereby researchers have devised several solutions, 
including image processing and object detection using deep learning 
models (Panigrahi et al., 2020). Deep learning (DL) is a branch of 
machine learning that involves training artificial neural networks to 
learn from large volumes of data and make predictions. Moreover, it 
is known for its ability to use many processing layers to discover 
patterns and structures in large datasets (Rusk, 2015). It moreover 
automatically extracts features from the data, making them suitable 
for various applications, such as image recognition, natural language 
processing, speech recognition, and autonomous systems (Ho, 2016). 
It has become widely known for its potential and advanced ability to 
efficiently process large numbers of images, yielding reliable outcomes. 
It is doing very well in many fields, including agriculture (Kamilaris 
and Prenafeta-Boldú, 2018). During the last few years, many crops 
have become accustomed to detecting, classifying, and assessing a 
broad spectrum of diseases, pests, and stresses (Singh et al., 2016; 
Panigrahi et al., 2020; Haque et al., 2022). For the past several years, 
deep learning achievements in computer vision tasks have strongly 
depended on Convolutional Neural Networks (CNNs) (Raghu et al., 
2021). CNNs prevail in the domain of computer vision as a foundation 
for various applications, such as image classification (Sibiya and 
Sumbwanyambe, 2019; Darwish et al., 2020; Syarief and Setiawan, 
2020; Atila et al., 2021; Chen et al., 2021; Liu and Wang, 2021; Haque 
et al., 2022), object detection (Zhang et al., 2020; Liu and Wang, 2021; 
Maxwell et al., 2021; Roy et al., 2022) and image segmentation (Gayatri 
et al., 2021; Liu and Wang, 2021; Loyani and Machuve, 2021; Maxwell 
et al., 2021; Sibiya and Sumbwanyambe, 2021). The CNN architecture 
consists of components such as a convolutional layer, a pooling layer, 
a fully connected layer, and activation functions (Bharali et al., 2019; 
Francis and Deisy, 2019; Jasim and Al-Tuwaijari, 2020), as shown in 
Figure 1.

Natural language processing has been performed using 
transformer architecture, and vision transformers have produced 
outstanding outcomes compared to CNNs (Vaswani et al., 2017; Qi 
et  al., 2022). Researchers have recently adapted transformers to 
computer vision applications, inspired by the significant success of 
transformer architectures in the field of NLP. The Vision Transformer 
(ViT) has achieved cutting-edge performance on various image 
recognition benchmarks. In addition to image classification, 
transformers have been used to solve a variety of computer vision 
problems, including object identification, semantic segmentation, 
image processing, and video interpretation. Because of their superior 
performance, an increasing number of academics are proposing 

transformer-based models for improving a wide range of visual tasks 
(Han et al., 2023). ViT works by implementing a transformer-like 
architecture over image patches. Images are divided into fixed-size 
patches, which are then linearly embedded. Position embeddings are 
then added, then the resulting vector sequence is fed into a standard 
transformer encoder. The standard approach of adding an extra 
learnable classification token to the sequence is used to perform 
classification (Vaswani et  al., 2017; Dosovitskiy et  al., 2020). The 
sequence of the 1D array is passed to the transformer structure. To 
process 2D image patches, the 2D patches are extracted from the first, 
and then they are reshaped to create 1D arrays that are suitable for the 
ViT structure. They are added to the positional encoder to finish 
preparing the patch embedding for the next layer. The positional 
encoder aids the network in remembering the relative position of the 
patches with one another. Inputs are then normalized with the 
normalization layer before entering the transformer block. The multi-
head attention layer is the most important aspect of this block. The 
multi-head attention layer calculates weights to assign higher values 
to the more important areas. In other words, network attention is 
focused on the most important parts of the network. The output of the 
multi-head attention layer is a linear combination of each head 
(Borhani et al., 2022). Figure 2 shows the ViT architecture inspired by 
Vaswani et al. (2017).

Both the ViT and CNN models have achieved state-of-the-art 
results in various computer vision tasks, including plant disease 
detection. However, the relative performance of the model would 
depend on the specific dataset, model architecture, and training 
hyperparameters used in a certain study. A lot of various techniques 
have been developed and proposed for the detection of diseases in 
general. The most adopted techniques CNN and ViT have shown great 
performance when used separately Therefore, this study aimed to 
develop combined deep-learning models for the early detection of 
Maize Streak Virus (MSV) and Maize Lethal Necrosis (MLN) diseases 
in maize plants based on images obtained and collected directly from 
the field, allowing the model to be trained with real data. The grand 
purpose is to utilize the maize imagery datasets collected from farms 
and made available in open source to the research community for 
future studies on MLN and MSV infections, by introducing, an 
approach that enhances the effectiveness and efficiency of these 
diseases in maize. Hence this paper fills a gap existing in a debate 
between the most quality and reliable model for detection of 
maize diseases.

2 Related works

The diagnosis of a wide variety of plant diseases and pests has 
shown encouraging and remarkable results when employing deep 
learning techniques in computer vision, such as CNNs. A 
convolutional neural network deep learning model was developed to 
analyze images of healthy and unhealthy plant leaves. A total of 87,848 
images in an open database with 25 distinct plants in 58 distinct 
categories of healthy and unhealthy images were trained using five 
model architectures, AlexNet, AlexNetOWTBn, GoogLeNet, 
Overfeat, and VGG. VGG was the most common architecture for 
detecting plant diseases, with a higher success rate. Implementation 
was performed using the Torch71 machine learning computational 
framework, which uses the LuaJIT programming language. The 
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model’s exceptionally excellent performance makes it suitable as a vital 
early warning or advising tool (Ferentinos, 2018). This study was 
conducted in Athens, Greece, to detect many plant diseases and not 
specifically for the detection of maize streak virus and lethal 
maize necrosis.

Another deep-learning model was developed to detect maize 
diseases in Indonesia. The study used a classification approach to 
detect 3 diseases, Cercospora, northern leaf blight, and common 
rust. A support vector machine, k-nearest neighbor, and decision 
tree were used to classify the maize leaf images, and seven other 
CNN architectures were used to analyze the maize leaf images. The 
architectures used included ResNet50, GoogleNet, VGG19, 
AlexNet, Inception-V3, VGG16, ResNet110 and VGG19. The data 

consisted of 200 images that were divided into 4 classes, 50 images 
per class with a size of 256×256 pixels. However, AlexNet and SVM 
were the best methods for feature extraction and image 
classification of maize leaf diseases. This study used fewer samples 
(200 images), which were collected in Asia (Syarief and 
Setiawan, 2020).

Additionally, a Mobile-DANet model was developed to identify 8 
maize crop diseases, gibberella ear rot, maize eyespot, crazy top, gray 
leaf spot, Goss’s bacterial wilt, common smut, phaeosphaeria spot, and 
southern rust. Except for some samples, the results of the Mobile-
DANet model demonstrated that the majority of the images and maize 
diseases were correctly identified. Mobile-DANet correctly detected 
samples with phaeosphaeria spots with a probability of 0.71. Similarly, 

FIGURE 1

CNN architecture (Voulodimos et al., 2018).

FIGURE 2

Vision transformer architecture (Dosovitskiy et al., 2020).
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the model accurately detected gibberella ear rot and southern rust 
disease, with probabilities of 0.83 and 0.93, respectively. China served 
as the study location, and this study focused on maize images other 
than MSV and MLN images. The model employed in the study is 
Mobile-DANet (Chen et al., 2021).

Furthermore, another study from India proposed a deep 
convolutional neural network to detect healthy and diseased images 
of maize leaves. The dataset contained 5,939 images of maize leaves. 
The dataset consisted of images of three diseases, Maydis leaf blight 
(MLB), Sheath blight (BLSB), Turcicum leaf blight (TLB), and banded 
leaf, as well as healthy maize leaves. The study employed the 
Inception-v3 network structure, as well as three more different models 
were developed using the normal training procedure (Haque 
et al., 2022).

In Cairo, Egypt, a classification model for the identification of 
common rust, northern leaf blight, healthy maize leaves, and gray leaf 
spots was developed. To identify plant diseases, an ensemble model 
composed of two pre-trained convolutional neural networks, VGG19 
and VGG16, was used to distinguish between the leaves in healthy 
photos and the leaves in unhealthy photos. The outcomes show how 
well the suggested strategy works, outperforming alternative methods 
for VGG19. Even though the created model performed well, this study 
struggled with the categorization of unbalanced data, and the dataset 
employed lacked sufficient images to properly train CNNs that were 
created from scratch (Darwish et al., 2020).

A model for the recognition of common rust (Puccinia sorghi), 
gray leaf spot (Cercospora), and northern corn leaf blight 
(Exserohilum) from healthy leaves was developed due to the impacts 
of these diseases on the majority of the maize plantations in 
South Africa. Neuroph was used for training the convolution neural 
network to recognize and classify images of maize. CNN was quite 
correct in identifying these diseases. This research was restricted to 
the neuroph framework of the Java neural network, which is an 
integrated environment for developing and deploying neural networks 
to Java programs, despite the model’s strong performance (Sibiya and 
Sumbwanyambe, 2019).

A similar study was conducted by Sibiya and Sumbwanyambe 
(2021) to develop a CNN deep learning model. The diseased leaf area 
was calculated using segmentation by the threshold on diseased 
images of leaves of maize impacted by common rust disease. This 
information was used to create ambiguous decision guidelines in 
assigning common rust images to severity groups with images created 
using this proposed approach. The VGG-16 network, trained with 
images generated using this suggested method, achieved a higher 
testing and validation accuracy when tested on photos of common 
rust illness in 4 stages of severity (early stage, middle stage, late stage, 
and healthy stage). Despite the good performance of the developed 
model, this study was limited to only the image segmentation 
approach, which tends to partition a digital image into multiple 
segments. Furthermore, the study used a CNN architecture, which 
lacked a detailed description.

Arnaud et al. (2022) from Kenya developed a deep learning model 
to examine, in contrast, 6 convolutional neural network architectures. 
Transfer learning was employed for model training, and the 
architectures used included EfficientNet b7, VGG19, SqueezeNet, 
GoogleNet, AlexNet, and DenseNet. The study analyzed four 
hyperparameters: the batch size, learning rate, number of epochs, and 

number of optimizers. An open-source dataset with 4,082 photos was 
used. DenseNet121 outperformed other models by achieving a higher 
accuracy and F1 score. DenseNet121 was trained with batch 32, a 
learning rate of 0.01, and stochastic gradient descent (SGD) as the 
optimizer. In general, various techniques for detecting plant diseases 
have been proposed. These techniques have shown good performance; 
however, no studies have focused on building a combined deep-
learning model for the detection of MSV and MLN together, and there 
is no publicly available dataset containing images of maize leaves 
infected by MSV and MLN. Moreover, several studies have used a 
large number of images from online sources, which might not 
accurately represent field scenarios. As a result, this study aimed to 
develop a combined deep learning model for MSV and MLN detection 
based on images collected directly from the field, allowing the model 
to be trained with real data. The dataset will be made available in open 
source to the research community for future studies on MLN and 
MSV infections. Furthermore, the majority of the studies employed 
transfer learning methods, and the scope of their studies was not 
in Tanzania.

3 Materials and methods

3.1 Overview of the proposed method

Figure 3 provides an overview of the proposed method from the 
acquisition of data to model development, model validation, and 
delivery of an optimized model. Images of healthy and diseased maize 
leaves were collected from the farms. The image datasets were then 
pre-processed and divided into training and testing sets. The models 
were then trained and tested to evaluate the performance and accuracy 
of the created models.

3.2 The dataset

The datasets were collected from three regions which are Arusha, 
Kilimanjaro, and Manyara. These regions were selected due to having 
a large number of farmers across the country. The focus of the dataset 
collection was on the affected maize plants. Two main diseases MSV 
and MLN were observed from the leaves and images were captured. 
Leaves were selected from the middle tier of the maize plants. This tier 
was chosen to provide a consistent basis for comparison, as leaves at 
different heights may exhibit varying levels of disease symptoms. They 
were collected during the mid-season phase of the growing season. 
This phase was selected because it is when the symptoms of Maize 
Streak Virus (MSV) and Maize Lethal Necrosis (MLN) are most 
prominent and easily identifiable. Moreover, the study focused on two 
widely cultivated maize varieties in Tanzania: Situka M1 and T105. 
These varieties were chosen due to their regional prevalence and 
known susceptibility to MSV and MLN. By including two varieties, the 
study aimed to ensure that the model is robust and generalizable across 
different genetic backgrounds. The process of data collection took a 
period of (6) months, starting from February to July, the process 
involved plant pathologists to be able to identify the symptoms of the 
diseases. The Open Data Kit (ODK) tool installed in a smartphone was 
used to capture these images. All the images were captured in the 
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format of a Joint Photographic Group (JPG). At the end of data 
collection, 27,660 images were obtained which were sufficient for 
model development. The distribution of these images was 9,145 healthy 
images, 8,604 MLN images, and 9,911 MSV images. To prepare the 
proposed model to be able to identify images other than maize leaf 
images, 675 more images of different things were acquired from open-
access databases to be included for training the model. Figure 4 shows 
the researcher collecting data in the field, and Figure  5 shows the 
sample image data samples captured from the three classes that were 
collected from the field. Image labeled (a) is an image of a maize leaf 
that is healthy, image labeled (b) is an image of a maize leaf affected 
with Maize Lethal Necrosis (MLN) and the last image labeled (c) is an 
image of a maize leaf affected by Maize Streak Virus (MSV).

3.3 Data cleaning and preprocessing

This is a very crucial stage, where all the collected data is cleaned 
and ensured it is free of any erroneous or fraudulent information. This 
process normally uses various tools and software (Lee et al., 2021). In 
the data-cleaning stage, the following steps were conducted.

3.3.1 Removing duplicates and cropping
In this step, duplicate images from the three classes, Healthy, MSV, 

and MLN, were removed using the VisiPics tool (Arora et al., 2016). 
The tool was selected because of easy usage and it functions very well 
in eliminating exactly similar images. In total there were 27,660 images 
collected from the field before removing duplicates, 747 images were 
found duplicates and deleted. 26,913 images remained after removing 
duplicates. Table 1 lists the total number of images from the three 
classes, before and after the duplicates have been removed. The images 
were also cropped manually to remove unnecessary background so 
that maize leaf would be the main focus. This is seen in Figure 5.

3.3.2 Labeling and resizing
The labeling process was conducted with the help of a tool named 

bulk rename utility to fasten the labeling process. Image labeling was 
done by naming the data to the corresponding classes. These images 
were ensured to have a jpg format to be able to function during the 
development of the model. The labeling involves a process for 
determining what number of images will be used for model training 
and model validation. The image dataset was also resized according to 
the proposed deep-learning model requirements. Images employed to 
train and test the CNN model were resized to a uniform pixel of size 
256*256, and images used to train and test the Vit model were resized 
to a uniform pixel of size 200*200. Proposed models.

This study focused on developing two deep learning models, a 
Convolutional Neural Network (CNN) and a Vision Transformer 
(ViT), for the early detection of Maize Streak Virus (MSV) and Maize 
Lethal Necrosis (MLN) diseases.

FIGURE 3

Block diagram summary for the proposed work.

FIGURE 4

Researcher collecting imagery leaves in maize farms.
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3.4 Model development

3.4.1 CNN
CNNs are a class of deep learning algorithms primarily used for 

image recognition and classification. They are designed to recognize 
local patterns in the input image. This algorithm comprises key 
components that include convolution layers, pooling layers, fully 
connected layers, and activation functions. Convolutional layers are 
used to apply convolution operations to the input image, passing the 
results to the next layer. Pooling layers play the role of down-sampling 
operations to reduce the dimensionality of the feature maps, which 
assists in the reduction of overfitting and computational complexity. 
Fully connected layers are commonly used at the end of the network 
to output a class score, however just like traditional neural networks 
they connect every neuron in one layer to every neuron in the next 
layer. Activation functions are used to introduce non-linearity to 
the model.

CNN model was developed with a total of 27,588 images from 
four classes (Healthy, MLN, MSV, and WRONG). The dataset was split 
into 80% for the training set and 20% for the testing set for all four 
classes. Because of the large number of images, the model was trained 
in four groups of batches where the output weights that were utilized 
in training the first batch were employed as input in training the 
second batch, then the same thing for the third and fourth batch. The 
first three batches each contained 6,000 datasets. The datasets were 
split into 4,800 images for the training set and 1,200 images for the test 
set for each batch in (Healthy, MSV, and MLN); however, for the 
WRONG class in the training set, 540 images were included, and for 
the test set, 135 images were included, maintaining an 80:20 ratio for 
each class. For the fourth batch, the model was trained using the 
remaining 8,913 datasets. The dataset was again split into an 80:20 
ratio for the training set and the test set, resulting in 7,131 samples for 
training and 1,782 samples for testing for Healthy, MSV, and MLN, 
where the number of the WRONG image class remained the same. A 
sequential model was employed in this implementation that defined 
5 convolutional layers, and each layer was followed by a max pooling 
layer. The first convolution layer had 16 filters; the second convolution 
layer had 32 filters; and the third to fifth layers had 64 filters. These 
were then followed by a flattening layer and a dense layer with 512 
neurons. A rectified linear unit (ReLU) was employed as an activation 
function in all the convolutional layers. The number of classes was 
represented by the output dense layer, which had 4 neurons with a 
softmax activation function. The images were rescaled by (1.0/255) 
and resized to 256 × 256 pixels. The hyperparameters used for training 
the CNN model and their values are shown in Table 2.

3.4.2 ViT
Vision Transformers (ViT) represents a novel approach to 

image recognition tasks by utilizing the transformer architecture 
which was initially created for challenges related to natural 
language. Important ViT components include patch embedding, 
transformer encoder, self-attention mechanism, and position 
embedding. In patch embedding an input image is split into fixed-
size patches, and each patch is linearly embedded into a vector. 
These embeddings are then combined to form a sequence. The 
sequence of patch embeddings is processed through multiple layers 
of the transformer encoder. Each encoder layer consists of a multi-
head self-attention mechanism and feed-forward neural networks. 

The self-attention mechanism is what allows the model to weigh the 
importance of different patches in the image enabling it to capture 
long-range dependencies and contextual information. Since 
transformers do not have a built-in notion of spatial relationships, 
position embeddings are added to the patch embeddings to retain 
the spatial information of the image.

The ViT model was developed with a dataset consisting of a total 
of 6,675 samples from four classes (HEALTHY, MLN, MSV, and 
WRONG). The images were resized to a uniform size of 200×200 
pixels. The ViT model architecture comprises patch embedding, 
positional embedding, 12 transformer layers, and a classification head. 
Each transformer layer includes 12 attention heads in the multi-head 
attention mechanism, and the feedforward neural networks in the 
transformer have a dimensionality of 3,072. Each patch in the image 
has a size of 25, and the number of output classes is 3, corresponding 
to the number of classes in the dataset. The hidden dimensionality of 
the transformer model is 768, and a dropout rate of 0.1 was applied. 
The activation function used in this model was the Gaussian error 
linear unit (GELU). The hyperparameters used for training the ViT 
model are shown in Table 3.

FIGURE 5

Examples of imagery data from maize dataset where (A) Healthy, 
(B) MLN, (C) MSV.

TABLE 1 Number of images before and after duplicate images.

Classes Numbers of 
images 
before 

duplicates

Duplicate 
images

Number of 
images after 
duplicates

Healthy 9,145 530 8,615

MLN 8,604 26 8,578

MSV 9,911 191 9,720

Total 27,660 748 26,913

TABLE 2 Hyperparameters used for training the CNN model.

Parameter Value

Epoch 50

Batch size 32

Steps per epoch 167

Optimizers Adam

Losses Categorical_crossentropy

Metrics Accuracy, Precision, Recall, 

F-measure
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3.5 Experimental setup

The experiment for this study was conducted on a machine 
running Windows 10 with an Intel(R) Core (TM) i5-4200U CPU @ 
1.60 GHz and 2.30 GHz with an installed RAM of 8 GB and a 64-bit 
operating system. Both the CNN and ViT models were trained 
online using Google Collab, which consists of Python3 as the 
run-time and a GPU as the hardware accelerator. The 
implementation was carried out using the Keras library with 
TensorFlow on the backend. The language used during model 
training was Python because of its ability to provide a variety of 
freely available machine-learning libraries.

4 Results and discussion

4.1 CNN model training results

The model training results show that the second batch got the 
highest validation accuracy of 0.9791 and a low validation loss of 
0.1465. The average of the validation accuracy for the entire training 
for all datasets from all 4 batches is 0.90965. The results for model 
performance recorded during the 1st to the 50th epoch for each of 
the four batches are summarized in Table 4. Figure 6 on the left 
shows the CNN training accuracy and loss curve of over 50 epochs. 
The results for accuracy over the epoch graph show that the 
validation accuracy increased rapidly up to the 5th epoch, then 
remained steady at around 90% exhibiting fluctuations up to the 
16th epoch where it dropped to 0.8824 on the 17th epoch and went 
high again remaining steady in the 0.90 with fluctuations up to the 
last epoch and reaching a peak of 0.9790. Meanwhile, the training 
accuracy increased rapidly up to the 12th epoch and followed a 
similar trend of remaining steady at 0.90 with fluctuations hitting a 
maximum accuracy of 0.9998 surpassing the validation accuracy 
without any significant fluctuations. This indicates that the model 
exhibited effective generalization. On the loss over epoch graph in 
Figure 6 on the right, the results demonstrate that the training loss 
decreases rapidly from the 1st epoch to the 10th epoch, after which 
it starts to fluctuate slightly, exhibiting periodic increases and 
decreases until the end. Meanwhile, the validation loss shows a 
rapid decrease from the outset until the 5th epoch, followed by a 
pattern of fluctuation with periodic increases and decreases until 
the final epoch. This shows that the model aligns closely with the 
characteristics of the dataset throughout both the initial and final 
phases of the training process.

4.2 ViT model training results

The ViT model was trained in only one batch. The model achieved 
a validation accuracy of 0.9310 and a validation loss of 0.3371. The 
results for model performance recorded during the 1st to the 50th 
epochs are plotted in Figure 7. The results for accuracy over the epoch 
graph show that the validation accuracy increased rapidly up to the 
4th epoch, then remained steady at around 80%, and then 90% 
exhibiting fluctuations up to the 26th epoch where it dropped to 
0.8606 on the 27th epoch, and went high again remaining steady in 
the 90% with fluctuations but dropped again in 40th epoch and went 
up to the last epoch and reaching a peak of 0.9310. Meanwhile, the 
training accuracy increased rapidly up to the 10th epoch and followed 
a similar trend of remaining steady at 90% with fluctuations hitting a 
maximum accuracy of 0.9777 surpassing the validation accuracy 
without any significant fluctuations. This indicates that the model 
exhibited effective generalization. On the loss over epoch graph in 
Figure 7 on the right, the results demonstrate that the training loss 
decreases rapidly from the 1st epoch to the 5th epoch, after which it 
starts to fluctuate slightly, exhibiting periodic increases and decreases 
until the end. Meanwhile, the validation loss shows a drop-down from 
the outset to the 4th epoch, followed by a pattern of fluctuation with 
periodic increases and decreases until the final epoch. This observation 
suggests that the model aligns closely with the characteristics of the 
dataset throughout both the initial and final phases of the 
training process.

4.3 Comparative analysis of accuracy 
results from related works

The model efficiency results from other related studies were 
reviewed and compared to those obtained in this work. The findings 
of this study fairly correlate with those from other studies (Table 5).

5 Discussion

This study developed two deep learning models, CNN and 
ViT. Both models performed well in detecting MSV and MLN diseases 
in maize plants. The ViT model achieved a validation accuracy of 
93.1%, whereas the CNN model achieved an overall average validation 
accuracy of 90.97%. These results suggest that both models are capable 
of detecting the presence of diseases in maize plants. Furthermore, 
these results are considered to be among the best examples of a good 
model, as a good model is expected to have an accuracy greater than 
70% (Maxwell et  al., 2021). However, deep learning models also 
perform very well when trained with larger datasets. The CNN model 
for this study was trained with 27,588 data samples compared to 
Syarief and Setiawan (2020) who used a few data samples (200) for 
model training in the detection of maize diseases. The majority of the 
studies have employed transfer learning to train deep learning models 
for maize diseases detection and their scope is not focused on Tanzania 
(Darwish et al., 2020; Syarief and Setiawan, 2020; Chen et al., 2021; 
Arnaud et al., 2022; Haque et al., 2022), unlike the study where both 
CNN and ViT deep learning models were developed from scratch and 
the study area is Tanzania. Another study by Sibiya and 
Sumbwanyambe (2021) developed a deep learning model for early 

TABLE 3 Hyperparameters used for training the ViT model.

Parameters Value

Epoch 50

Steps per epoch 154

Batch size 32

Optimizer Adam

Metric Accuracy

Learning rate 0.0001

Losses categorical-Crossentropy
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detection of maize disease using a segmentation approach, while the 
approach of the study for our case was classification. Furthermore, 
none of the studies has come up with a combined deep-learning model 
for the early detection of MSV and MLN diseases in maize. 
Additionally, when the developed deep learning models were 
compared, the ViT model had somewhat greater accuracy than the 
CNN model. According to Dosovitskiy et al. (2020), the ViT model’s 
key design which includes the ability to capture global dependencies 

through self-attention mechanisms gives it an advantage in detecting 
and classifying various plant diseases with higher accuracy than the 
CNN model. Furthermore, ViT divides the input image into patches 
and processes these patches as sequences, enabling the model to learn 
a high-resolution and systematic representation of the image data. 
However, when the prediction speed for both models per image is 
compared. CNN is 10 milliseconds faster than ViT which is 20 
milliseconds per image.

FIGURE 7

Training and validation plots for ViT model.

TABLE 4 CNN model performance results.

Batches Validation 
accuracy

Validation loss Precision Recall F measure

Batch 1 0.9581 0.3436 1.0000 1.0000 1.0

Batch 2 0.9790 0.1465 0.9998 0.9998 0.9998

Batch 3 0.8135 1.9335 0.9882 0.9872 0.9880

Batch 4 0.8878 0.5497 0.9672 0.9625 0.9648

FIGURE 6

Training and validation plot for CNN model.
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6 Conclusion

This study has shown that early maize disease detection is possible 
in Tanzania, with a specific focus on the Maize Streak Virus (MSV) 
and Maize Lethal Necrosis (MLN). The study collected a substantial 
dataset comprising 26,913 field-acquired images and 675 wrong 
images acquired from open-access databases. The dataset’s availability 
as an open-source resource will facilitate further research on MSV and 
MLN infections. Deep learning models, namely, convolutional neural 
networks (CNNs) and vision transformers (ViTs), were developed to 
address the challenge of early disease detection. Both models were 
developed from scratch, with CNN demonstrating its ability to extract 
local image features, while ViT demonstrated proficiency in 
understanding the global image context. ViT achieved a validation 
accuracy of 93.10%, while CNN achieved a validation accuracy of 
90.96%. This highlights the value of deep learning models in the early 
diagnosis of plant diseases in maize.
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TABLE 5 Comparison of accuracy results from related works.

Crop diseases Model architectures Study reference Highest 
Accuracy (%)

Variety crop diseases AlexNet, AlexNetOWTBn, GoogLeNet, 

Overfeat, VGG

Ferentinos (2018) 99.53%

Cercospora, common rust, and northern leaf blight AlexNet, virtual geometry group (VGG) 16, 

VGG19, GoogleNet, Inception-V3, residual 

network 50 (ResNet50) and ResNet101

Syarief and Setiawan (2020) 93.5%

Phaeosphaeria leaf spot, gibberella ear rot, crazy top, grey leaf 

spot, common smut, southern rust, Goss’s bacterial wilt, maize 

eyespot

Mobile-DANet Chen et al. (2021) 95.86%

Maydis Leaf Blight, Turcicum Leaf Blight and Banded Leaf and 

Sheath Blight

VGG-16, VGG-19, Inception-v3, ResNet-50-v2, 

ResNet-101-v2, ResNet-152-v2 and 

InceptionResNet-v2

Haque et al. (2022) 95.99%

Variety crop diseases VGG16 and VGG19 Darwish et al. (2020) 96.7%

Northern corn leaf blight (Exserohilum), common rust (Puccinia 

sorghi) and gray leaf spot (Cercospora)

CNN Sibiya and Sumbwanyambe 

(2019)

92.85%

Maize common rust disease (Early stage, Middle stage, Late 

Stage, and Healthy stage.)

VGG-16 Sibiya and Sumbwanyambe 

(2021)

95.63%

Potato late blight and early blight are common EfficientNet b7, VGG19, SqueezeNet, 

GoogleNet, AlexNet, and DenseNet

Arnaud et al. (2022) 98.34%

Maize Streak Virus and Maize lethal Necrosis CNN and ViT Proposed method 93.1%
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