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ABSTRACT

In this dissertation, deterministic and stochastic mathematical models for a deformable per-

turbed continuously stirred tank reactor (CSTR) with exothermic and endothermic reactions

have been developed and analysed. The Ordinary Differential Equations (ODEs) were obtained

by using the Reynold transport theorem and Stochastic Differential Equations (SDEs) were de-

rived in the It�o sense from the developed classical deterministic models. There were four types

of SDEs formulation, namely, additive SDE, multiplicative SDE, parameter perturbation SDE

and transition probabilities SDE. The numerical results of the developed models were obtained

and analysed through statistical and Bayesian methods. These methods were Classical Least

Squares (LSQ) and Markov chain Monte Carlo (MCMC) for ODES while the Euler-Maruyama

technique was used to simulate the SDEs. The LSQ numerical �ndings showed that the mea-

surements �t theoretical models well provided that the noise intensity ranges between 0 and 0:5.

The MCMC results identi�ed the parameters posterior means and the credible intervals in which

models parameters must be oscillating. The PRCCs with Latin Hypercube Sampling technique

were applied to check the sensitivity and uncertainty quanti�cation of estimated parameters

against the models’ response. Some of the parameters of models were found to be highly and

positively correlated with models’ states and others were highly and negatively correlated with

models’ state variables. For example, seven parameters were found to be highly correlated with

exothermic CSTR model whilst six parameters were identi�ed to be highly correlated with en-

dothermic CSTR model. This implies that those parameters have to be controlled and treated

carefully as the increase or decrease in their values signi�cantly impact the models’ outcomes.

For the case of stochastic part, simulations of SDEs revealed that high �uctuations notably af-

fect trajectories of the variables. The overall numerical results obtained seem to be reliable and

have shown an insight in describing the dynamics of the CSTR deterministic and stochastic

models with detailed mathematical and statistical information. So, the formulated models were

analysed, validated and can be used to model and describe various mechanical, biological and

chemical processes such as �ltration, anaerobic respiration and combustion among others.
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CHAPTER ONE

INTRODUCTION

1.1 Background of the Problem

From the 19th century until the middle of 20th century, Continuously Stirred Tank Reactors

(CSTRs) were designed to be used for waste treatments, military tools to produce mustard

gas, medical sample tubes to collect patients’ samples, nuclear reactors to produce nuclear

energies, hand-crafts tools in colour painting. All these reactors were in type of pots, vessels,

tubes, chambers, containers, apparatuses and towers as stated in Rowse (2011) and Kockmann

(2019). Before 21st century, there was no clear difference between reactors and all of them

were categorised as reactors regardless their functionality behaviours (Kockmann, 2019). It is

from 21st century where scientists, engineers and design engineers tried to distinguish these

reactors depending on their functionalities and their production abilities ranging from batch

processing to continuous stirred processing (Kockmann, 2019). Now, CSTRs are very useful

chemical reactors that produce chemical products from the given inputs of reactants (Telen et al.,

2014). The complexity and the non-linearity dynamical behaviours of CSTRs have attracted

many researchers, especially mathematicians who can contribute to determining, predicting,

estimating parameters and controlling the states of these reactors. Examples of reactants and

products include alcohols, polymers from monomers, fertilisers, pharmaceutical products and

renewable energies from biogas process, among others. According to Vojtesek et al. (2008),

mathematical understanding of how these tanks behave, is of great importance for solving,

predicting and controlling them. It is moreover, important to analyse the effect of deformation

and the perturbation that may be present in the CSTRs’ models during processing. Different

sources of deformation and perturbation which may be observed in CSTRs are from the change

in feeding rates, environmental disturbances and measurements imperfect, among others.

1.2 Problem Statement

A great number of scholars reported that the mathematical formulation, the parameter estima-

tion, methods to be used, control and the prediction of reactors seem to be a challenge due to

reactors’ non-linearity behaviour. To mention few from where the research idea in this study has

been drawn, Oravec et al. (2018) revealed that robust model predictive control method is a good

1



method for CSTRs, however it is a challenging task for controlling and predicting CSTRs due

to their non-linearities’ behavior present in their models as well as time-varying uncertainties

in its parameters. They further captioned that �nding a suitable mathematical formulation for a

complex process maybe a challenging task. Shakeri et al. (2018) have shown that over the past

years, stochastic CSTRs models have been given little attention. They argued that there is a need

to develop stochastic CSTRs models that may be able to describe and capture the randomness

aspects in the system. Another challenge of having some of non-converging CSTRs’ param-

eters is found in Muhirwa et al. (2017). Rowse (2011) claimed that choosing inappropriate

range of CSTR’s parameters impacts the expected yields from CSTRs while on the other hand,

Karimi et al. (2014) mentioned that it is very important to take care of stochastic disturbance

intensities into CSTR models by considering a wide range of parameter estimation problems

with prior knowledge about the parameters. Many researchers ignored deformation which may

alter the scale of production conversion (Yamamoto et al., 2019). Others do not consider the

perturbation of the tanks by not taking into consideration of noise which is a measure of how the

process responds to the external disturbances like stochastic excitement and change in feeding

rates (Karimi et al., 2014). In the literature, a great number of scholars focus on only two or

three states deterministic models with a �rst order simple exothermic irreversible models, for

instance, Sinha et al. (2018). In addition, they considered very simpli�ed assumptions such as

constant volume, constant densities, and areas of the tanks as well as isothermal CSTRs (Sinha

et al., 2018). Therefore, this research aims at addressing some of these gaps by considering

non-isothermal and both non-deterministic and deterministic models as the tanks may behave

stochastically as can be found in Karimi et al. (2014). This research will further construct and

display CSTR models that consider the �rst-order irreversible events with the variation of vol-

umes. The other research gaps that will be addressed by the researchers is to solve and identify

physical parameters of both variable-volume endothermic and exothermic CSTR models with

four state variables namely, volumes, concentrations, reacting tanks’ temperature and cooling

or heating jackets’temperature.

1.3 Rationale of the Study

Most of the real life problems are modelled, solved and analysed using mathematical concepts.

The same concepts are applied in chemical engineering, whereby the dynamics of the chemical

reactors are modelled, solved, analysed, controlled and predicted mathematically. Hence, math-
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ematical understandings of chemical industrial processes which ranges from industrial research,

industrial development and extends to industrial operations are among the best approaches to

minimize the risk of industrial’s prototyping process. Cost for performing a physical-chemical

laboratory experiment on the real chemical industry processes is inventively high. Combining

laboratory experiments with mathematical modeling and computer experiments by simulations

could lead to wastage of resources due to the tremendous cost. This may even lead to some

unexpected hazards. As a result, a simple theoretical mathematical analysis provides a piece

of very necessary and useful information for not only the global scientists, engineers and de-

signers but also for the East-African scientists, engineers and designers as their countries are

calling investors to install pharmaceutical industries, especially, Rwanda (Emmanuel, 2017).

Such information assists them to design cost effectively and more appropriate prototypes and

production systems. The focus of this research is neither the construction of prototypes nor the

creation of the physical-chemical industries’ tanks rather it is the development of a mathemati-

cal model and its simulations for the understanding of the behaviour of these tanks to generate

knowledge that may help design engineers, chemical and process engineers to design suitable

prototypes and produce physical tanks for chemical industries cost effectively.

1.4 Research Objectives

1.4.1 General Objective

The general objective of this research is to develop deterministic and stochastic deformable-

perturbed CSTRs’ models, and use Bayesian and statistical methods to analyse them.

1.4.2 Speci�c Objectives

This research has the following �ve speci�c objectives:

(i) To formulate perturbed exothermic and endothermic CSTRs’ models both deterministic

and stochastic;

(ii) To perform numerical simulations of the formulated CSTRs’ models and determine the

effectiveness of different numerical methods in solving these models;

(iii) To assess the effect of perturbation on the CSTRs’ models;

(iv) To determine the impact of CSTRs’ deformation;
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(v) To simulate an actual real-life chemical problem as an application of CSTRs.

1.5 Research Questions

The following are the research questions that have to be addressed in this study:

(i) Can we formulate suitable and analysable non-deterministic and deterministic mathemat-

ical models for CSTR?

(ii) Can we �nd effective methods to solve CSTR models?

(iii) What is the effect of perturbations on CSTR models?

(iv) Is there deformation impact on CSTR models?

(v) Is there a real-life application of CSTR?

1.6 Signi�cance of the Study

Continuously stirred tank reactor (CSTR) is very useful and important production tool in chemi-

cal engineering. This kind of tank reactor exhibits non-linear and complex dynamical behaviour

which makes it to be very dif�cult to analyse, control and predict. Mathematical modelling and

analysis of the CSTR help in determining the dynamical evolution of the CSTR’s states. Com-

bining experimental studies with numerical simulations of reactors mostly leads to unnecessary

waste of resources and may cause unpredicted hazards. This dissertation numerically solves and

analyses the dynamics of the CSTR’s models which incorporate variable-volume and stochas-

tic aspects, quantitatively. As a result, this study serves as a primary source of knowledge for

chemical and design engineers towards the production of appropriate and suitable physical tank

reactors with reasonable cost.

1.7 Delineation of the Study

In this study, deterministic and stochastic mathematical models for the CSTR with a variable-

volume are formulated (Chapter 3) and numerically solved and analysed (Chapter 4). Due to

unavailability of the CSTR’s primary data, the numerical results obtained were not based on the

actual real data but simulated data from the models using literature values.
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It was very important for chemical and design engineers to know better about the estimate

values of the physical quantities of the CSTR, namely, variables and parameters. In addition,

to be aware about the magnitude of the effects of perturbation and deformation which may

occur on the CSTR’s models, from various sources was of a paramount bene�t for the CSTR

designing process. Even if the dynamical evolution of CSTR with cooling / heating process has

been analysed in this dissertation, the following limitations were encountered:

(i) The formulated models both deterministic and stochastic were non-linear and have a great

number of unknown parameters and hence complex, hence only numerical results of mod-

els have been obtained;

(ii) Due to unavailability of real data, data simulated from literature values have been used.

With more time, real data can be sought and analysed to really identify CSTRs’ models

in future;

(iii) Due to computational facilities, the formulated models were not computed in parallel.

However, this can be done in the presence of facilities like High Performance Computing

(HPC).
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CHAPTER TWO

LITERATURE REVIEW

2.1 Literature Review on Types of Chemical Reactors and their Descriptions

According to Foutch et al. (2003), Moran et al. (2000), Theodore (2012), Finlayson (2012)

and Couper et al. (2009), there is no simple way of classifying chemical reactors due to the

complexity, non-linearity term of the system and the variable of interest. However, there is

a common way of classifying them depending on their operational behaviour, reaction phases

namely homogeneous (one phase, either liquid phase, gas phase or solid phase) or heteroge-

neous (more than one phase, either liquid-gas, gas-liquid, solid-gas, gas-solid, solid-liquid-gas,

gas-solid-liquid, gas-liquid-solid, etc.), reaction types (exothermic reactions which can release

heat energy and endothermic reactions which can acquire heat energy to react). Advantages and

disadvantages of these tanks which may be scienti�c or economical play a big role in differen-

tiating the chemical reactors in terms of easiness of functioning, weaknesses, complications,

production methods, as well as their physical properties which include size, shape and design.

Even though there are many types of reactors, Barnard (1985) tried to show the most useful

three types of reactors which are batch reactors, tubular reactors and CSTRs. They have high-

lighted some of the industrial advantages and disadvantages of these reactors based on their

performance and treatment as well. Poulopoulos et al. (2006) have shown different ways of

classifying reactors, and one way of doing this is to look at the number of reaction phases that

are allowed in, which may be homogeneous, means a single phase that is either liquid-phase or

gas-phase, heterogeneous, means two or three phases such as liquid-gas, liquid-solid, gas-solid,

and vice-versa among others. Salmi et al. (2010) showed types of reactors that may be classi�ed

based on catalyst scraps and are called catalytic reactors. Among them are �uidized beds when

these scraps are very tiny, trickle beds if scraps are immobile and slurry reactors if the catalyst

scraps are suspended in the �uid. Therefore, Table 1 shows the main three types of chemical

reactors which are commonly used in industries nowadays with the possibility of changing their

names as stated above.
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Table 1: Description of chemical reactors

Type working be-
haviour

Number of
phases

Reaction
types

Advantages Disadvantages

BATCH Reactants and
products are
supplied and
withdrawn
once respec-
tively

Homogeneous
and heteroge-
neous

Exothermic
and Endother-
mic

Easier to un-
derstand, low
cost and low
capital

Small con-
version scale
(most of
cookers),
not-�exible:
no possibility
to be changed
over

SEMI-
BATCH

It is a Batch
but either
reactants
or products
can be put
or removed
continuously

Homogeneous
and heteroge-
neous

Exothermic
and Endother-
mic

Medium �rm
tools, big in
size com-
pared to batch
reactors, tem-
perature and
concentration
prediction
within time,
some how
easier to con-
trol

Batch and
mid-CSTR,
not practica-
ble in many
reactions

CSTR Reactants
and product
are fed and
removed con-
tinuously

Homogeneous
and heteroge-
neous

Exothermic
and Endother-
mic

High conver-
sion scale, in-
dustrial tools,
practicable for
all most all re-
actions

Too complex
to predict and
control, nor-
mally operates
at steady-state

2.2 General Literature Review on CSTRs

In the past decades, CSTRs have gained research momentum whereby most scientists and chem-

ical engineers would like to know the theories and the mathematics behind these tanks due to

the complexity and non-linearity operational behaviour that are present in these reactors dur-

ing the production process (Naikwad et al., 2009). Discussions about CSTRs that are found

in literature seems to be broad, hence a non-exhaustive list of literature that consists of early

and recent research on the matters related to the topic has been reviewed. Among others we

have, robust feedback linearization of an isothermal continuous stirred tank reactor was con-

ducted by To�ghi et al. (2017) using mixed sensitivity synthesis and iteration approaches in the

presence of uncertainties. Also, the �rst-order and higher-order sliding mode observer methods

have been used in Osorio et al. (2011) to design and estimate states and unknown inputs of the
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CSTR, and it was shown that higher-order sliding mode may be adopted to reduce the noise into

the system compared to �rst-order sliding mode.

The Luenberger fuzzy observer, Luenberger fuzzy observer with sliding modes, Walcott-Zak

fuzzy observer and Utkin fuzzy observer were adopted and used as fault detection sensors of the

CSTR, the more details are found in Ballesteros-Moncada et al. (2015). Again, a general model

of the CSTR was developed and the transient behaviour for irreversible non-linear polymer-

ization process in CSTR has been studied in Dias et al. (2005). Furthermore, a mathematical

model and simulation of reactors with production experiment of Hexane from Benzene were

performed in Prokopov·a et al. (2009). The experimental investigation of performance of CSTR

as bioreactor for producing biohydrogen from water melon waste in the anaerobic diegester

was done and explained in details by Cahyari et al. (2016). Zhang et al. (2013) identi�ed the

�ow behaviours in the CSTR trough three-dimensional computational �uids dynamics (CFD)

simulations. Furthermore, the effect of hydrodynamic shear on biogas production in the CSTR

were analysed and discussed in the study of Jiang et al. (2016) using Metzner-Otto method.

The ef�cient Azo Dye colour identi�cation in the CSTR with the built-in bio-electrochemical

system was developed for Azo dye alizarin yellow R (AYR) which in turn help in wastewater

treatment as mentioned in the work of Cui et al. (2016). The result has shown that the CSTR

bio-electrochemical system could serve as a good strategy to add more value to the conventional

existing anaerobic facilities compared to the refractory wastewater treatment approach. In the

same way, different types of reactors and types of reactions in chemical engineering processes

that may be used in production are widely de�ned and described in Nanda (2008). Limitations

of CSTRs’ performance due to cooling jacket dynamics with both open and closed loops are

spoken out and discussed in the article of Russo et al. (1993).

The modelling and control of the CSTR were done based on a mixed logical dynamical model

which resulted in satisfactory performance of the tank as revealed in the work of Jingjing et al.

(2007). Another article on mathematical modeling and numerical simulations of two-phases

which are gas-liquid �ow in the CSTR was published by Karadimou et al. (2019). In addition,

the non-parametric and non-linear stochastic dynamical model together with the behavior anal-

ysis of a class of the single state isothermal CSTR was studied and analysed in Tronci et al.

(2009). Ahmed et al. (2013) used the cascade control strategy to control the temperature of the

exothermic CSTR with cooling jacket. The stability analysis of the system was investigated
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and achieved by using Routh-Hurwitz and Argand diagram. The adaptive method with recur-

sive identi�cation and the polynomial synthesis with placement of poles were applied on the

CSTR system by Vojtesek et al. (2009) to study its dynamics, however, this method provided

inappropriate control responses and overshoots.

The problem of characterizing the global dynamics of a single state non-linear stochastic CSTR

system is addressed in Tronci et al. (2009) by using the Fokker-Plank as the state probability

distribution function, but the study of several state non-linear stochastic system is of paramount

as recommended in this article. The same approach of Fokker-Plank was applied for a two-state

stochastic CSTR system as can be observed in Shakeri et al. (2018). Moreover, the effect of

operating conditions on the CSTR’s performance with saponi�cation experiment was conducted

in the research of Danish et al. (2015), and the result has shown that the increase in conversion

scale depends on the increase in CSTR’s volume. Besides that, the dynamical behaviour of

the CSTR through a single �rst order reaction was researched on and analysed in the work of

Uppal et al. (1974). It was mentioned that this method is one of among the best methods for the

successful control of a system with the non-linearity behaviour.

Once more, the neural network approach was used to identify the dynamics of two-states namely

the temperature and the concentration of the CSTR’s model and the method has provided rea-

sonable and precise results as can be found in Al-Araji (2015). The chemical process hazards,

causes and proposed measures of safety of batch and semi-batch processes are as well discussed

in Etchells (2005). In Karimi et al. (2015), the two-states CSTR stochastic model were studied

and analysed by using the approximate expectation maximization (AEM) and Bayesian algo-

rithms. It was revealed that Bayesian is an effective method to apply on CSTR’s stochastic

models since it provided more accurate parameter estimates compared to AEM, and it is even

more applicable for an unknown system with a small number of data sets. L·opez Buritic·a et al.

(2015) used Monod and Haldane kinetics methods to perform the stability analysis of a system

that models the formation of bio�lms inside the CSTR during the waste-water treatment pro-

cess. Even though both methods performed well, still the Monod kinetics provided bio�lms

formation in a shorter time compared to the Haldane kinetics method. Likewise, the parameters

estimation of non-linear chemical and biological processes with non-measured variables from a

number of data sets was done by Jang et al. (2011) using Bayesian approach with examples of

mammalian cell growth process, genetic regulatory network and JAK-STAT models.
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From Buehler et al. (2016), the Lyapunov-based stochastic non-linear model predictive control

was used to shape the state probability density functions in the CSTR with simple exothermic

reaction A k�! B. Rajagopalan et al. (1972) performed multivariate character and stability

analysis of irreversible exothermic CSTRs, and the signal �ow diagram and the equilibrium

states were determined by taking into consideration of �rst and second-order reactions. The

Bayesian approach was again used in Nicoulaud-Gouin et al. (2016) as the sorption parameters

identi�ability tool. The research outputs have shown that Bayesian inference is more preferable

for the analysis of CSTR experiments as per numerical identi�cation and sorption parameter

identi�cation as well. A modi�ed CSTR model for the neutralization process was studied and

analysed in the research of Ibrehem (2011). This CSTR model has been used to assess the

effects of strong acid (HCL) and strong base (NaOH) on the �ow rates of ionic concentrations

and more discussions are found in Ibrehem (2011). A one state variable precisely temperature of

a non-isothermal CSTR was analysed by using PID and Fuzzy logic controllers, and the results

from simulation and temperature control shown that Fuzzy logic is a good controller compared

to PID control as can be explored in Ramli et al. (2017).

However, due to the complexity and the non-linearity dynamical behaviour of CSTRs, the very

important problem that the researchers are eager to address is to �nd a good parameter variation

estimator for both deterministic and stochastic models. The identi�cation of reliable methods

that can provide converging solutions for a non-isothermal, four-states models of the perturbed

and deformed exothermic and endothermic CSTRs is also addressed in this research.
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CHAPTER THREE

MATERIALS AND METHODS

In this Chapter, there are discussions of materials employed in continuously stirred tank reactor

(CSTR) models’ formulation and descriptions of methods used to analyse those formulated

models. The Chapter is split into three main Sections, whereby the �rst Section deals with

deterministic CSTR models formulation while the second Section contains CSTR stochastic

models formulation. The last Section describes the methods used to analyse the models.

3.1 Formulation of CSTRs Deterministic Models

The CSTR deterministic models are formulated using the schematic diagram represented in Fig.

1 for the exothermic reaction and Fig. 2 for the endothermic reaction within the tank.

Figure 1: Schematic diagram that shows dynamics of exothermic CSTR system

Figure 2: Schematic diagram that describes the dynamics of endothermic CSTR system
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The variables, parameters and units of quantities that are shown in Fig. 1 and Fig. 2 are

described in Table 2 and Table 3.

Table 2: Table of variables and parameters

Symbol Units Description
Tin K Temperature of the feeding re-

actants
Cin

kmol
minm3 Concentration of the feeding re-

actants
Fin

m3

min Volumetric �ow of the feeding
reactants

�in
kg
m3 Density of the inlet reactant

Tcin K Feeding cooling temperature
� kg

m3 Density of the substance inside
the reacting tank

Cp kcal
Kkg Speci�c heat capacity of the re-

acting tank
A m2 Surface area of the reacting tank
V (t) m3 Volume of the reacting tank at

time t
T (t) K Temperature of the substance

inside the reacting tank at time
t

THin K Feeding heating temperature
C(t) kmol

minm3 Concentration of the product in-
side the reacting tank at time t

�H kg
m3 Density of the heating substance

AH m2 Cross-sectional area between
the reacting tank and the heat-
ing jacket

VH m3 Volume of the heating jacket
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Table 3: Continued table of variables and parameters

Symbol Units Description
CpH

kcal
Kkg Speci�c heat capacity of the

heating jacket
FH m3

min Volumetric �ow of the heating
substance

�out
kg
m3 Density of the outlets (products)

Fout
m3

min Volumetric �ow of the outlets
(products)

Tout K Temperature of the outlets
(products)

Cout
kmol

minm3 Concentration of the outlets
(products)

�c kg
m3 Density of the coolant substance

Tc(t) K Temperature of the cooling
jacket at time t

Ac m2 Cross-sectional area between
the reacting tank and the cool-
ing jacket

Vc m3 Volume of the cooling jacket
Cpc

kcal
Kkg Speci�c heat capacity of the

cooling jacket
Fc m3

min Volumetric �ow of the coolant
substance

To study the CSTRs behaviour as a whole system is complicated, that is why most of the re-

searchers choose a unit and de�ne a virtual control volume that may physically explain the

transport phenomena in and out of the system by applying the Reynold transport theorem

(RTT)(Lorenz, 2006; Baddour, 2008; Lee, 1969). Thus, instead of considering Fig. 1 and Fig.

2 for model formulation, the schematic diagram that is presented in Fig. 3 is used to explain the

transport phenomena in and out of CSTRs.
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Control VolumeInlets streams 
Outlets streams

Q: heat exchange

W: work done due to surroundings

E: Total energy in a control volume

V: volume of control volume

Figure 3: Control volume illustration

3.1.1 Formulation of Deterministic Model for Exothermic CSTR

During deterministic model formulation of the exothermic CSTR, the following assumptions

were taken into considerations:

A.1 There is perfect mixing in CSTRs to avoid spatial gradients of velocity, temperature,

concentration and of other properties of the mixture.

A.2 The shaft work produced by the stirring process is negligible.

A.3 No pressure drop happening in the CSTRs implies that CSTRs work at a constant pressure

A.4 Kinetic energy, potential energy and other forms of external energy are in�nitesimal small

compared to the heat exchange and the heat from the chemical reactions

A.5 The wall is isolated and its temperature is negligible. Only the heat exchange is chan-

nelled through the designed area between reacting tanks and jackets

A.6 The CSTRs’ volume is a variable

A.7 The CSTRs’ densities �, the speci�c heat capacities Cp are constants

A.8 There is negligible external stress acting on the system, hence negligible momentum on

the system.

Based on the assumptions listed above and from the chemical reaction point of view, the deriva-

tion of the deterministic model for exothermic CSTR is done by considering the empirical
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concentration which is given by

C =
n
V
;

where n is the number of moles that are contained in molecules of substance and V is the

volume occupied by that substance. The rate of production is given by

r =
1
V

dn
dt

=
dC
dt
�

dn
dt

= V
dC
dt
:

If we have a reactant to be converted into a product, then the rate of production becomes

r = �
dC
dt

= kC:

However, the reaction rate k has the temperature dependency which is shown in Van’t Hoff

equation and it is expressed as

d(ln k)
dT

=
4Hr
RT 2 � d(ln k) =

4Hr
RT 2 dT: (1)

Solving Equation (1) for k by integrating both side with respect to T leads to

Z k

k0

d(ln s) =
Z T

Tmean

4Hr
Ry2 dy � [ln s]kk0

= �
4Hr
R

�
y�1�T

Tmean
:

So,

ln k � ln k0 = �
4Hr
R

�
T�1 � Tmean

�1� � ln(
k
k0

) = �
4Hr
R

�
T�1 � Tmean

�1� ;

k
k0

= e�
4Hr

R (T�1�Tmean
�1) � k = k0e�

4Hr
R ( 1

T �
1

Tmean ):

If we let4Hr = E be an activation energy, the energy required to activate the system, we get

k = k0e�
E
R ( 1

T �
1

Tmean );

which is the Arrhenius equation with R being the gas law constant. As a result, the production

rate is given by:

r = kC = k0e�
E
R ( 1

T �
1

Tmean )C: (2)

All derivations which lead to Equation (2) are done with the help of formulas found in Hill et al.
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(1977) and Kandiyoti (2009).

The CSTRs’ deterministic models are developed by using the fundamental principle of con-

servation of quantities. So, the accumulation of substance’s property residing inside the system

during a certain interval of time is equal to the amount of substance �ows in subtract the amount

of substance �ows out plus the amount of substance produced inside the system subtract the

amount of substance consumed in the system over that interval of time.

The substance property may represent the total mass, the individual (components) mass, the

concentration, the volume, the total energy or the momentum. By applying the Raynold trans-

port theorem (RTT) (Niven et al., 2018), on the control volume in Fig. 3, then, the total mass

balance (total continuity) in word equation is mathematically described as:

Accumulation of the total mass inside the system over time interval = mass �ows in - mass

�ows out � mass created or consumed inside the control volume by the reactions over the time

interval. The equivalent mathematical equation to the above stated word equation is given in

(3). From the molecular continuity equation i.e component mass balance, we have the time rate

of change of moles of the components in the control volume = the components molar �ows in

- the components molar �ows out � the rate of components molar created or consumed by the

reaction in the control volume. Mathematically, the total mass accumulation inside the system

is described as,

d
dt

�Z

c:v
CiV dV

�
=
X

in�ows

FinCini �
X

out�ows

FoutCouti �
Z

c:v
ridV: (3)

Multiply Equation (3) by the molecular weight accumulations mi of species i, the equation

becomes

d
dt

�Z

c:v
CimiV dV

�
=
X

in�ows

FinmiCini �
X

out�ows

FoutmiCouti �
Z

c:v
rimidV: (4)

The terms Cimi, Cinimi and Coutimi are considered as mass densities of the mixture, the inlet

and the outlet respectively. Thus, Cimi = �, Cinimi = �in and Coutimi = �out. Therefore, the

Equation (4) is simpli�ed and becomes

d
dt

�Z

c:v
�V dV

�
=
X

in�ows

Fin�in �
X

out�ows

Fout�out �
Z

c:v
rimidV: (5)
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At the equilibrium state, the last integral term of Equation (5) becomes zero. By the assumption

A:7 which considers the densities to be constants and equal throughout the process, yields,

�
d
dt

�Z

c:v
V dV

�
= �in

X

in�ows

Fin � �out

X

out�ows

Fout: (6)

As a �nal result,

�
dV
dt

= � (Fin � Fout) �
dV
dt

= Fin � Fout: (7)

Again, the molar concentration rate is used to derive the concentration change inside the control

volume and it is given by:

d
dt

�Z

c:v
nidV

�
=

NsX

i=1

FiniCini �
NsX

i=1

FoutiCouti �
Z

c:v
ridV; (8)

d
dt

�Z

c:v
(CiV )dV

�
=

NsX

i=1

FiniCini �
NsX

i=1

FoutiCouti �
Z

c:v
ridV; (9)

d(CiV )
dt

= FiniCini � FoutiCouti � riV � V
dCi
dt

+ Ci
dV
dt

= FiniCini � FoutiCouti � riV: (10)

For simplicity and from the assumption A:6, Equation (10) can be written as:

V
dCi
dt

+Ci
dV
dt

= FiniCini �FoutiCouti � riV � V
dC
dt

+C
dV
dt

= FinCin�FoutCout� rV: (11)

Substituting Equation (7) into Equation (11) leads to Equation (12) below,

V
dC
dt

+ C (Fin � Fout) = FinCin � FoutCout � rV;

V
dC
dt

= FinCin � FoutCout � rV � CFin + CFout:
(12)

Since C = Cout from the perfect mixing in the assumption A:1, and by division of V on the

Equation (12), with Fin = F; these reduce the Equation (12) to Equation (13)

dC
dt

=
F
V

(Cin � C)� r: (13)

By substituting Equation (2) into Equation (13) yields,

dC
dt

=
F
V

(Cin � Cout)� k0e
E
R ( 1

T �
1

Tmean )C: (14)
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Finally, the derivation of the energy conservation of the system is attained by using the presented

control volume in Fig. (3). From the �rst principle of thermodynamics on the open system with

reactions which states that the energy is neither created nor destroyed but it is transformed into

other form of energy. So, the total energy of the system is given by E = U + KE + PE

where, U is the total internal energy, KE is the total kinetic energy and PE is the total potential

energy. Let consider the inlets streams’ properties Fin; Tin; Vin; ein and pin to be volumetric

�ow, temperature, volume, partial molar energies and pressure of the inlet streams respectively.

Also let Fout; Tout; Vout; eout and pout be the volumetric �ow, the temperature, volume, partial

molar energies and pressure of the outlet streams respectively. Hence, the change in energy of

the system is mathematically formulated as:

dE
dt

= Finein � Fouteout +Q+W +KE + PE: (15)

However, W represents all form of energies due to surroundings and it is written as:

W = FinVinpin � FoutVoutpout � p
dV
dt

+Wshaft +Wf ; (16)

where FinVinpin, FoutVoutpout,�pdV
dt ,Wshaft andWf are the works done by inlet streams, the outlet

streams, the change in volume of the control volume, the stirring process and other external

forces respectively. Substitution of Equation (16) into Equation (15) produces Equation (17)

dE
dt

= Finein � Fouteout +Q+ FinVinpin � FoutVoutpout � p
dV
dt

+Wshaft +Wf +KE + PE;

dE
dt

= Fin (ein + Vinpin)� Fout (eout + Voutpout) +Q� p
dV
dt

+Wshaft +Wf +KE + PE:

(17)

After taking ein + Vinpin = hin and eout + Voutpout = hout to be speci�c enthalpies of inlet and

outlet streams, then, Equation (17) becomes

dE
dt

= Finhin � Fouthout +Wshaft +Wf +Q� p
dV
dt

+KE + PE: (18)

But from the assumptions A:2; A:4; and A:8; the kinetic energy, the potential energy, the shaft

work and the external work done are in�nitesimal small as compared to the heat exchange

and the internal energy for chemical reactors. That means, KE; PE; Wshaft; Wf ; � 0: As a
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consequence,
dE
dt

= Finhin � Fouthout +Q� p
dV
dt
�=

dU
dt
: (19)

Stepanov (2017) shows that, the enthalpy equation is given by:

H = U + pV: (20)

Differentiation of Equation (20) with respect to t yields,

dH
dt

=
dU
dt

+
d
dt

(pV ) �
dH
dt

=
dU
dt

+ p
dV
dt

+ V
dp
dt
: (21)

The substitution of Equation (19) into Equation (21) gives Equation (22).

dH
dt

= Finhin � Fouthout +Q+ V
dp
dt
: (22)

The terms of Equation (22) can be expressed in partial molar enthalpies which are

Finhin =
NsX

i=1

FiniHini and Fouthout =
NsX

i=1

FoutiHouti : (23)

Substitute Equation (23) into Equation (22) to obtain

dH
dt

=
NsX

i=1

FiniHini �
NsX

i=1

FoutiHouti +Q+ V
dp
dt
: (24)

But also the CSTRs are designed in a such way that there is no pressure drop which implies that

they operate at a constant pressure as stated in the assumption A:3. This implies the last term

of Equation (24) to be zero. So,

dH
dt

=
NsX

i=1

FiniHini �
NsX

i=1

FoutiHouti +Q: (25)

It remains to establish the relationship between the enthalpy and the temperature. The overall

differentiation of the enthalpy with no pressure drop is obtained from Bird et al. (2007), and it

is expressed as

dH
dt

= �CpV
dT
dt

+
NsX

i=1

Houti
dni
dt

with
dni
dt

= Fini � Fouti + V
NdX

j=1

Vj;irj: (26)
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Therefore,
dH
dt

= �CpV
dT
dt

+
NsX

i=1

Houti

 

Fini � Fouti + V
NdX

j=1

Vj;irj

!

: (27)

By equating the Equation (25) and the Equation (27), resulted in Equation (28)

�CpV
dT
dt

+
NsX

i=1

Houti

 

Fini � Fouti + V
NdX

j=1

Vj;irj

!

=
NsX

i=1

FiniHini �
NsX

i=1

FoutiHouti +Q: (28)

After simpli�cation and rearrangement of terms of Equation (28) and taking

NdX

j=1

HoutiVj;irj = 4Hiri; (29)

gives Equation (30)

�CpV
dT
dt

=
NsX

i=1

Fini (Hini �Houti) + V
NsX

i=1

(�4Hi)ri +Q: (30)

The Equation (30) can be further simpli�ed by taking

NsX

i=1

Fini = F;
NsX

i=1

(�4Hi)ri = �H�r; and
NsX

i=1

(Hini �Houti) = �
Z Tout

Tin

�CpdT: (31)

Upon inserting Equations from (31) into the Equation (30) displays

�CpV
dT
dt

= V (�H�)r + F
Z Tin

Tout

�CpdT +Q: (32)

Since �, Cp are constants from the assumption A:7, Q = UA(Tc � T ) = �UA(T � Tc) from

the assumption A:5, and r = k0e�
E
R ( 1

T �
1

Tmean )C; then the Equation (32) becomes

dT
dt

=
F
V

(Tin � T ) +
�H�k0e�

E
R ( 1

T �
1

Tmean )C
�Cp

�
UA
�CpV

(T � Tc): (33)

The dynamics of the heat in the cooling jacket can be deduced from Equation (33) since there

is no reaction carried out inside. Then,

dTc
dt

=
Fc
Vc

(Tcin � Tc) +
UA

�cCpcVc
(T � Tc): (34)
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Grouping together Equations (7), (14), (33) and (34), �nally leads to the non-linear system of

ODEs which governs the exothermic CSTRs deterministic model in the form of Equation (35)

8
>>>>>>>><

>>>>>>>>:

dV
dt = Fin � Fout;

dC
dt = F

V (Cin � C)� k0e�
E
R ( 1

T �
1

Tmean )C;

dT
dt = F

V (Tin � T ) + (�H�k0e
�E

R ( 1
T �

1
Tmean )C

�Cp
� UA

�CpV
(T � Tc);

dTc
dt = Fc

Vc
(Tcin � Tc) + UA

�cCpcVc
(T � Tc):

(35)

3.1.2 Formulation of Deterministic Model for Endothermic CSTR

As for the deterministic model of the exothermic CSTR, a similar way is followed to formulate

the variable-volume deterministic model for endothermic CSTR except that there is heating

process that requires energy to be supplied on the system through the heating jacket which

boosts the reaction. From the fundamental chemistry, the endothermic reactions have positive

enthalpies. Therefore, on one hand, the temperature of the heating process diminishes while

on the other hand the temperature of the mixture inside the tank increases. As a result, the

four state variables endothermic CSTR’s deterministic model is also governed by the following

system of ordinary differential equations:

8
>>>>>>>><

>>>>>>>>:

dV
dt = Fin � Fout;

dC
dt = F

V (Cin � C)� k0e�
E
R ( 1

T �
1

Tmean )C;

dT
dt = F

V (Tin � T ) + H�k0e
�E

R ( 1
T �

1
Tmean )C

�Cp
+ UA(TH�T )

�HCpHVH
;

dTH
dt = FH

VH
(THin � TH)� UA(TH�T )

�HCpHVH
;

(36)

where H� is the process temperature dependent enthalpy.

3.2 Formulation of CSTRs Stochastic Differential Equation Models

After the contribution made by Robert Brown who discovered the Brownian motion in 1827,

stochastic modelling became a new direction of well describing the real physical, engineering,

chemical and biological processes both experimentally and statistically. In the deterministic ap-

proach, models describe the system in the vicinity of its steady-state (local analysis) whereas the
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study concerning about stochastic models is motivated by the fact that is due to capturing and

characterising the effect of model uncertainty, which may in�uence the system outputs glob-

ally. Moreover, engineering, biological and chemical processes are often perturbed by small

measurement errors and this has a great impact on the system outputs. Consequently, it is

state-worth and of paramount to study and analyse various dynamical processes both determin-

istically and stochastically in order to be able to explore, characterise, control and quantify the

randomness aspects that are not usually visible in the system deterministic model, but are often

and in reality associated with the real system.

The time varying systems that are deterministically modeled by using the ordinary differential

equations may be transformed into stochastic differential equations after introducing the �White

noise� or its time derivative called �Wiener process� or Brownian motion in the deterministic

model. The stochastic differential equation is composed by two parts, namely, �drift part� which

describes the system deterministically and �diffusion part� which captures the random effect on

the system. The general formula for stochastic differential equation is given by

dX(t)
dt

= �(X(t); t) + �(X(t); t)�White noise; (37)

where X(t) is the state variable, �(X(t); t) is the drift part and �(X(t); t)�White noise is the

diffusion part.

The problem of stochastic differential equation is to de�ne, solve and characterise the properties

of White noise. The White noise can mathematically be written as �(t) = dB(t)
dt and so, after

multiplying dt on both sides of Equation (37), then the stochastic differential equation becomes

dX(t) = �(X(t); t)dt+ �(X(t); t)dB(t): (38)

De�nition 1: Wiener process

According to Sauer (2012) and Øksendal (2003), a stochastic process B(t) with t 2 [0; T ] is

called a Wiener process if the following properties hold:

(i) B(0) = 0 with almost surely (a.s);

(ii) B(t) is a continuous function with respect to time;
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(iii) The process increment B(t) � B(s) has Gaussian distribution with E[B(t) � B(s)] = 0

and V ar[B(t)�B(s)] = t� s; for 0 � s < t � ::: < T ;

(iv) The process incrementsB(ti)�B(si), for i = 1; 2; :::; n; are independent for the bounded

time interval 0 � s1 < t1 � s2 < t2 � s3 < t3 � ::: � sn < tn < T:

The paths taken by a Wiener process can be plotted to show its trajectories. So, Fig. 4 and Fig. 5

illustrate the sample of single and six paths taken by the Wiener process respectively. From Fig.

5, it is seen that each trajectory among six shown trajectories of the Brownian motion follows

its own path even if they are simulated by using the same initial values B(0) = 0 and the same

parameter values.

Figure 4: Example of a single trajectory taken by Brownian motion in the time interval [0; 1]: The
sample size, N = 1000; sampling time T = 1 and discrete time step size dt = 1=1000 are
used here.
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Figure 5: Sample of six trajectories of the Brownian motion in the time interval [0; 1]: All six
trajectories have been generated by using the same sample size N = 1000; sampling time
T = 1 and discrete time step size dt = 1=1000

The solution of stochastic differential equation, if it exists, is also stochastic. If the stochastic

process X(t) with the initial condition X(t0) = X0 is the solution of SDE (38), then it may be

weak or strong solution based on some properties. So, the solution can also be obtained in the

integral form as:

X(t) = X0 +
Z t

t0
�(X(s); s)ds+

Z t

t0
�(X(s); s)dB(s): (39)

On the right hand side of Equation (39), there are two integrals. The �rst integral is an ordinary

integral but the second one is not, simply because the Wiener process is not differentiable ev-

erywhere. To address the non-differentiable issue of the second integral, It�o and Stratonovich

have developed two mathematical approaches to handle the integral
R t
t0
�(X(s); s)dB(s). If �

is a constant, then Z t

t0
�(X(s); s)dB(s) = �(B(t)�B(t0)): (40)

If � is not a constant function, then the approximate solution of the diffusion part of the

stochastic integral is obtained (Sethi et al., 1981). In this dissertation, the It�o integral is

considered because of the preservation of the martingale properties. The stochastic integral in

Equation (39) is also called an It�o process.
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Theorem 1: It�o Integral (Øksendal, 2003)

Assume that X(t) is an It�o process such that

dX(t) = �(X(t); t)dt+ �(X(t); t)dB(t); (41)

and chosen a function f(t; x) to be twice continuously differentiable with respect to x and once

differentiable in t. Thus,

Y (t) = f(t;X(t)); (42)

is also It�o process with

dY (t) =
@f(t;X(t))

@t
dt+

@f(t;X(t))
@x

dX(t) +
1
2
�2(X(t); t)

@2f(X(t); t)
@x2 dt; (43)

obtained after applying the chain rule differentiation on f(t;X(t)) as well as considering the

quadratic differentiation since the Wiener process has unbounded variation.

(i) It�o Integral Properties (Øksendal, 2003)

For all constants �;  2 R and 8 functions g; h 2 L
2(0; T ), the following properties are ob-

tained:

(i)
R T

0 (�h+ g)dB = �
R T

0 hdB + 
R T

0 gdB (Linearity property for step processes);

(ii) E[
R T

0 gdB] = 0 (Zero expectation property);

(iii) E[(
R T

0 gdB)2] = E[
R T

0 g2dt] = 0 (Isometric property);

(iv) E[
R T

0 gdB
R T

0 hdB] = E[
R T

0 ghdt] = 0 (as (dB)2 = dt):

Example 1: Evaluate the integral
R t

0 B(s)dB(s) in the It�o sense.

From the calculus point of view, the term, 1
2B

2(t) is likely to be obtained. So, let choose

f(t; x) = 1
2x

2 and let X(t) = B(t), by applying the It�o formula on Equation (44)

Y (t) = f(t; B(t)) =
1
2
B2(t); (44)
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delivers Equation (45)

dY (t) =
@f(t; B(t))

@t
dt+

@f(t; B(t))
@x

dX(t) +
1
2
�2(B(t); t)

@2f(B(t); t)
@x2 dt: (45)

So,

dY (t) = 0 +B(t)dB(t) +
1
2

dt; (46)

as �2(t; B(t)) = 1. Integrating both side of the Equation (46), yields

Y (t) =
1
2
B2(t) =

Z t

0
B(s)dB(s) +

1
2

Z t

0
ds =

Z t

0
B(s)dB(s) +

1
2
t: (47)

Hence, Z t

0
B(s)dB(s) =

1
2
B2(t)�

1
2
t: (48)

Example 2:

Let �nd the explicit solution of the geometric Brownian motion given by:

8
><

>:

dX(t) = �X(t)dt+ �X(t)dB(t);

X(0) = X0

(49)

by using the It�o theorem.

The Equation (49) can be written in the form of Equation (50)

dX(t)
X(t)

= �dt+ �dB(t): (50)

Integrate Equation (50) to obtain Equation (51)

Z t

0

dX(s)
X(s)

= �t+ �B(t): (51)

The It�o formula can be applied to function Y (t) = f(t; x) = log(x): So,

dY (t) = d(log(X)) =
@f(t;X)

@t
dt+

@f(t;X)
@x

dX +
1
2
@2f(X; t)
@x2 (dX)2: (52)
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Then,

d(log(X(t))) = 0 +
1

X(t)
dX(t)�

1
X2(t)

(dX(t))2;

d(log(X(t))) =
1

X(t)
(�X(t)dt+ �X(t)dB(t))�

1
X2(t)

(�X(t)dt+ �X(t)dB(t))2:
(53)

By using the increments properties that are (dt)2 = dtdB(t) = 0 and (dB(t))2 = dt, Equation

(54) is obtained as:

d(log(X(t))) = �dt+ �dB �
1
2
�2dt = (��

1
2
�2)dt+ �B(t);

log(X(t)) = (��
1
2
�2)t+ �B(t);

X(t) = X0e((�� 1
2 �

2)t+�B(t)):

(54)

(ii) Stratonovic Integral (Øksendal, 2003)

The Stratonovich stochastic differential equation is given by:

dX(t) = �(X(t); t)dt+ �(X(t); t) o dB(t); s (55)

where �o� in Equation (55) symbolises Stratonovich denotation.

By using the integral form, the Equation (55) becomes

X = X0 +
Z t

0
�(X(s); s)ds+

Z t

0
�(X(s); s) o dB(s); (56)

and then the Stratonovich suggests the evaluation of the function at the midpoint. That is to say

if f(t) is a twice differentiable continuous function, then the diffusion integral can be obtained

by applying the in�nite limiting of the Riemman sum as follow:

Z b

a
f(t) o dB(t) = lim

m!1

m�1X

i=0

1
2

(f(ti) + f(ti+1))(B(ti+1 �B(ti)): (57)

The terms 1
2(f(ti) + f(ti+1)) and B(ti+1) � B(ti) under the summation in the Equation (57)

are likely to be dependent. As a result, Stratonovich and It�o approaches have different results in

general but possible transformation from Stratonovich to It�o can be made and vice-versa (Sethi

et al., 1981). It�o approach gains several applications in �nance and economics since it has
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martingale property that is future prediction will not solely be different from today’s situation.

Contrary, Stratonovich is not martingale and hence anticipating.

Example 3: Let also consider the Brownian motion problem presented in Example 1. Find its

solution in the Stratonovich sense.

The It�o sense gives Z t

0
B(s)dB(s) =

B2(t)
2
�
t
2
; (58)

while the Stratonovich approach gives

Z t

0
B(s) o dB(s) = lim

m!1

m�1X

i=0

1
2

(B(ti+1) +B(ti)(B(ti+1)�B(ti)) (59)

= lim
m!1

m�1X

i=0

1
2

(B2(ti+1)�B2(ti)): (60)

After expanding the summation and simplifying, the Equation (62) is obtained as:

Z t

0
B(s) o dB(s) = lim

m!1

1
2

(B2(t)�B2(0)) (61)

=
B2(t)

2
: (62)

So, the difference between the two approaches on the same problem is

Z t

0
B(s)dB(s)�

Z t

0
B(s) o dB(s) = �

t
2
: (63)

One of the biggest advantage of the It�o approach is that the evaluations of the function under

integral are uncorrelated with the increments and their functions. That meansB(ti+1)�B(ti) is

uncorrelated withB(ti) and it is also uncorrelated with any function ofB(ti) and so E(B(ti+1)�

B(ti)) = 0:

Before discussing the existence and the uniqueness of a solution of the stochastic differential

equation, let �rst discuss the Gronwall’s Lemma.
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(iii) Gronwall’s Lemma (Oksendal, 2013)

Let � and f be continuous positive functions de�ned for 0 � t � T , and let C0 be a positive

constant.

If

�(t) � C0 +
Z t

0
f�ds; 8 0 � t � T; (64)

then

�(t) � C0e
R t

0 fds; 8 0 � t � T: (65)

Proof: Let �(t) = C0 +
R t

0 f�ds; then d�
ds = f� � f� and so

d
ds

(�e�
R t

0 fds) = (�0 � f�)e�
R t

0 fds � (f�� f�)e�
R t

0 fds = 0: (66)

Therefore,

�(t)e�
R t

0 fds � �(0)e�
R t

0 fds = C0; (67)

and hence

�(t) � �(t) � C0e
R t

0 fds: (68)

(iv) Existence and Uniqueness of Stochastic Solution (Lipschitz condition)

Consider the general stochastic differential equation presented in Equation (38) with the initial

condition X(0) = X0 and let � : Rn� [0; T ] 7! R
n and � : Rn� [0; T ] 7! M

m�n are continuous

and satisfy the following conditions:

(i) j �(x; t)� �(y; t) j� L j x� y j and j �(x; t)� �(y; t) j� L j x� y j for all 0 � t � T

and x; y 2 Rn;

(ii) j �(x; t) j� L(1+ j x j) and j �(x; t) j� L(1+ j x j) for all 0 � t � T and x 2 Rn for

some constant L;

The above (i) and (ii) statements reveal that � and � are uniformally Lipschitz continuous in the

variable x:

Let X0 be any Rn� valued random variable such that
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(iii) E(j X0 j2) is �nite that means E(j X0 j2) <1; and

(iv) X0 is independent of B(0); where B(:) is m�dimensional Brownian motion. Then there

exists a unique stochastic solution X 2 R2
n(0; T ) for the SDE that is shown in the Equa-

tion (38).

Uniqueness implies that if X; Y 2 R2
n(0; T ), with continuous sample paths almost surely

(a.s) and both solve the SDE in Equation (38), then the probability P (X(t) = Y (t)) = 1;

for all 0 � t � T:

Proof (Uniqueness)

Let X and Y be two distinct solutions of SDE presented in Equation (38). Then for all 0 � t �

T;

X(t)� Y (t) =
Z t

0
(�(X; s)� �(Y; s))ds+

Z t

0
(�(X; s)� �(Y; s))dB: (69)

From the inequality identity (x+ y)2 = x2 + 2xy + y2 � 2(x2 + y2); we have

E(j (X(t)� Y (t) j2) � 2[E(j
Z t

0
(�(X; s)� �(Y; s))ds j2)

+E(j
Z t

0
(�(X; s)� �(Y; s))dB j2)]:

(70)

By using the Cauchy-Schwarz inequality which says that j
R t

0 fds j2� t
R t

0 j f j
2 ds for 0 < t

and f : [0; t] 7! R
n: From this, we can estimate the two expressions in Equation (70) as follow,

E(j
Z t

0
(�(X; s)� �(Y; s))ds j2) � TE(

Z t

0
j (�(X; s)� �(Y; s)) j2 ds)

� TL2(
Z t

0
E[j X � Y j2]ds:

(71)

and

E(j
Z t

0
(�(X; s)� �(Y; s))ds j2) � L2(E(

Z t

0
j (�(X; s)� �(Y; s)) j2 ds))

� L2(
Z t

0
E[j X � Y j2]ds)

(72)

Combining the Equations (71) and (72) to obtain Equation (73)

E(j (X(t)� Y (t) j2) � C(
Z t

0
E[j X � Y j2]ds); (73)
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where the constant C = 2L2(1 + T ) for all 0 � t � T: If E(j (X(t) � Y (t) j2) = �(t); so the

Equation (73) becomes

�(t) � C
Z t

0
�(t)ds: (74)

From Gronwall’s Lemma presented above, choose C = C0 = 0; thus �(t) = 0 which implies

that E(j (X(t)� Y (t) j2) = 0. Therefore, X(t) = Y (t) a.s and P (X(t) = Y (t)) = 1: �

Proof (Existence of a solution)

The existence of a solution is determined by proving the boundedness and the convergence of

the solution. It is done as it is per ODEs. Hence without loss of generality, we this analogy is

applied and followed to show the existence of the stochastic solution of the Equation (38).

Consider

X = X0 +
Z t

0
�(X; s)ds+

Z t

0
�(X; s)dB; (75)

to be the solution of the SDE (38). By applying the iterative method on the solution, gives

Xn+1(t) = X0 +
Z t

0
�(Xn; s)ds+

Z t

0
�(Xn; s)dB; (76)

for n = 0; 1::: and 0 � t � T:

Let de�ne

�n(t) = E(j Xn+1(t)�Xn(t) j2) (77)

and make an assumption that

�n(t) �
(Dt)n+1

(n+ 1)!
for all n = 0; 1:::; 0 � t � T (78)

and for some constant D depending on L; T and X0:

By the induction, for n = 0, the result becomes

�0(t) = E(j X1(t)�X0(t) j2) = E(j
Z t

0
�(X0; s)ds+

Z t

0
�(X0; s)dB j2)

� 2E(j
Z t

0
L(1+ j X0 j)ds j2) + 2E(j

Z t

0
L(1+ j X0 j) j2 ds)

� 2L2t
Z t

0
E(1+ j X0 j)2ds+ 2L2

Z t

0
E(1+ j X0 j)2ds

� tD;

(79)
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for some large enough constant D. This conforms the claim for n = 0:

Assume the claim remains true for n� 1; then

�n(t) = E(j Xn+1(t)�Xn(t) j2) = E(j
Z t

0
(�(Xn; s)� �(Xn�1; s))ds

+
Z t

0
(�(Xn; s)� �(Xn�1; s))dB j2)

� 2TL2(
Z t

0
E(j Xn �Xn�1 j2 ds) + 2L2(

Z t

0
E(j Xn �Xn�1 j2 ds)

� 2L2(1 + T )(
Z t

0
E(j Xn �Xn�1 j2)ds:

(80)

But if

�n(t) = E(j Xn+1 �Xn j2) �
(Dt)n+1

(n+ 1)!
; (81)

thus,

�n(t) � 2L2(1 + T )
Z t

0

(Ds)n

n!
ds

�
Dn+1sn+1

(n+ 1)!
;

(82)

by choosing 2L2(1 + T ) � D: Finally, the claim is proved. So, the solution is proved to be

bounded.�

The convergence of the stochastic solution is omitted as it can be found in Oksendal (2013),

mainly on the page 70.

Mathematical modelling of chemical reactors are deterministically analysed by a large number

of researchers due to the fact that several methods have been widely developed to tackle de-

terministic models that are popular and built based on ordinary differential equations. Hence

Deterministic models become very easy to analyse over stochastic models (Hahl et al., 2016).

In addition, as can be found in Renard et al. (2013), deterministic solution is unique but some-

times unstable since small perturbation in its governing parameters or initial conditions can

drastically lead to high variations of the results. Thus, where possible, stochastic models are

naturally preferable as good descriptors of the physical, chemical and biological systems be-

cause of noise that is always associated with those processes (Hahl et al., 2016). Even if the

dynamics of a dynamical system can be well described and understood by the means of deter-

ministic approach, it is generally good practice not to ignore the stochastic aspects which are

32



often present in any chemical, biological or physical process and maybe rooted from:

(i) Slight changes in dynamical systems input which can cause chaos in the system;

(ii) Likelihood that the system translates from one state to other within a short period of time;

(iii) Evolution of the system that starts with small variation of parameter and state values;

(iv) Estimation of parameters and states which is inseparable with uncertainty analysis.

Apart from the above enumerated general stochastic aspects, state variables of the chemical

reactors such as concentration, temperature, volume of the mixture and the cooling temperature

inside the tanks most commonly spread and mix randomly by the diffusive mixing phenom-

ena (Fonseca, 2019; Mao et al., 2017; Burghardt, 2008; Akiti, 2000; Wilhelm, 1962). Moraes

(2015) has shown stochastic variability to be explored in chemical systems whereby a single or

more than one species of molecules can be present in low numbers of molecule. In this regard,

the classical description of the reaction into reactor by the approach of ordinary differential

equations can not fully capture some phenomena like unexpected extinction of one of the in-

teracting species in the mixture. Therefore, it is with the above reasons that the researchers are

eager and forced to develop and simulate CSTR stochastic-based models in order to incorpo-

rating the randomness aspect that describes stochastic dynamics in the formulated deterministic

models.

Stochastic models can be derived from deterministic models in the following four scenarios:

Scenario A: Additive of the diffusion part on each ODE of the system. The diffusion part is

composed by the �uctuation constant times the white noise.

Scenario B: Additive of the diffusion part composed by �uctuation constant times state variable

and white noise on each ODE of the system.

Scenario C: Perturbation of one or more important parameters of the model with the white

noise.

Scenario D: Through transition probabilities.

Each of the stated four scenarios of formulating the stochastic models has its advantages and

disadvantages. For the �rst scenario, the advantage is that formulation is simple but this tech-

nique increases the number of parameters in the model as disadvantage. The second scenario
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also increases the number of parameters in the model as disadvantage but this is a good ap-

proach simply because of taking into account of the perturbation of the model and each of its

respective state variable. The third scenario is good since it does not increase the number of

parameters in the model but as disadvantage the perturbation may not affect each and every or-

dinary differential equation of the system. The fourth scenario is the most preferable technique

but sometimes the covariance matrix obtained from small changes in the state variables may

lead to a square root of the product of a complex expression and a derivative of Brownian term.

In this dissertation, the four scenarios are considered, analysed and compared with the corre-

sponding deterministic models taken as benchmarks.

3.2.1 Exothermic CSTR Stochastic Models Formulation

(i) Scenario A: Diffusion part additive

Deterministic models always describe the system which evolves in only one direction. How-

ever, taking into consideration of the system that evolves in different directions rather than in

one direction is very important and it helps to determine the behaviour of the system in any

direction at any time. The stochastic models for the CSTRs considers �uctuations terms and

are formulated by adding diffusion terms on the deterministic models. Therefore, the perturbed

deformable stochastic models for the exothermic CSTRs is given by:

8
>>>>>>>>><

>>>>>>>>>:

dV = (Fin � Fout)dt+ �V dBV (t);

dC =
�
F
V (Cin � C)� k0e�

E
R ( 1

T �
1

Tmean )C
�

dt+ �CdBC(t);

dT =
�
F
V (Tin � T )� H�k0e

�E
R ( 1

T �
1

Tmean )C
�Cp

� UA(T�Tc)
�CpV

�
dt+ �TdBT (t);

dTc =
�
Fc
Vc

(Tcin � Tc) + UA(T�Tc)
�cCpcVc

�
dt+ �TcdBTc(t):

(83)

Note: Terms �V ; �C ; �T ; �Tc are �uctuation widths and are sometimes called volatility con-

stants whilst dBV (t); dBC(t); dBT (t); dBTc(t) are one another mutually independent Wiener

processes. This formulation is simple as advantage but it increases the number of parameters in

the model as disadvantage.
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(ii) Scenario B: Diffusion part additive times its corresponding state variable

For this scenario, the product of �uctuation constants, Wiener process and corresponding state

variable is added to each of the deterministic differential equation of the system. This gives the

system of stochastic differential equations shown in Equation (84).

8
>>>>>>>>><

>>>>>>>>>:

dV = (Fin � Fout)dt+ �V V dBV (t);

dC =
�
F
V (Cin � C)� k0e�

E
R ( 1

T �
1

Tmean )C
�

dt+ �CCdBC(t);

dT =
�
F
V (Tin � T )� H�k0e

�E
R ( 1

T �
1

Tmean )C
�Cp

� UA(T�Tc)
�CpV

�
dt+ �TTdBT (t);

dTc =
�
Fc
Vc

(Tcin � Tc) + UA(T�Tc)
�cCpcVc

�
dt+ �TcTcdBTc(t):

(84)

The formulation of this kind of stochastic models is simple as advantage but also it increases

the number of parameters in the model as disadvantage. Another disadvantage for this kind of

stochastic models formulation is to identify the numerical scheme which can be used to simulate

them and provides accurate and reliable numerical results.

(iii) Scenario C: Parametric perturbation

Stochastic model driven by parametric perturbation is obtained after making one or more im-

portant deterministic model parameters to be random variables which is also another way of

formulating a stochastic model. This process requires the thinking of one or more important

parameters to be perturbed from the deterministic model. As it is well known, the reaction

rate of a chemical reaction can be affected by a various number of external facets which may

be taking place either from the environment like climate factors or from the functionality of

the system itself such as the external cooling/heating system temperature, reactants impurities

just to mention few. Then it is worthwhile and does make sense to introduce random perturba-

tions on the reaction rate through the Arrhennius temperature dependent parameter k0; so that

k0dt = k0dt + �dB. Therefore, for this scenario, the exothermic CSTR deterministic model
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becomes stochastic model that is presented in Equation (85).

8
>>>>>>>>><

>>>>>>>>>:

dV = (Fin � Fout) dt;

dC =
�
F
V (Cin � C)� k0e�

E
R ( 1

T �
1

Tmean )C
�

dt� �e�
E
R ( 1

T �
1

Tmean )CdB;

dT =
�
F
V (Tin � T ) + �H�k0e

�E
R ( 1

T �
1

Tmean )C
�Cp

� UA
�CpV

(T � Tc)
�

dt+ �(�H�)e
�E

R ( 1
T �

1
Tmean )C

�Cp
dB;

dTc =
�
Fc
Vc

(Tcin � Tc) + UcAc
�cCpcVc

(T � Tc)
�

dt:
(85)

The formulation of this kind of stochastic models is simple and it does not increase many num-

ber of parameters in the model as advantages. However, the thinking of sensitive model param-

eter may be a challenge and the stochastic behaviour may not been seen in each every equation

that makes the CSTR’s system.

(iv) Scenario D: Transition probability

According to Allen (2007, 2017), the stochastic modeling of the system can be achieved

through transition probabilities by computing the mean of changes E(( ~4x)i) and the covari-

ance matrix of the changes as E(( ~4x)i ~4x)0i): Let us de�ne X1; X2; X3 and X4 to represent the

state variables V;C; T and Tc respectively, and let pi be the transition probabilities from each of

the terms of the system. The formulation of this type of SDEs is complicated as disadvantage

but the results may be accurate as advantage. From the exothermic CSTR deterministic model

shown in Equation (35), nine possible changes are counted and therefore, i = 1; 2; 3:::; 9: So,

the transitions and probabilities are displayed in Table 4.
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Table 4: Transition probabilities for the exothermic model

Transition Probability
( ~4x)1 = [1; 0; 0; 0]0 p1 = Fin4t
( ~4x)2 = [�1; 0; 0; 0]0 p2 = Fout4t
( ~4x)3 = [0; 1; 0; 0]0 p3 = F

V (Cin � C)4t
( ~4x)4 = [0;�1; 0; 0]0 p4 = k0e�

E
R ( 1

T �
1

Tmean )C4t
( ~4x)5 = [0; 0; 1; 0]0 p5 = F

V (Tin � T )4t

( ~4x)6 = [0; 0;�1; 0]0 p6 = H�k0e
�E

R ( 1
T �

1
Tmean )C

�Cp
4t

( ~4x)7 = [0; 0;�1; 0]0 p7 = UA(T�Tc)
V �Cp

4t
( ~4x)8 = [0; 0; 0; 1]0 p8 = Fc

Vc
(Tcin � Tc)4t

( ~4x)9 = [0; 0; 0; 1]0 p9 = UA(T�Tc)
Vc�cCpc

4t

Hence, the expectation of the changes is given by:

E( ~4x) =
9X

i=1

pi( ~4x)i = p1( ~4x)1 + p2( ~4x)2 + p3( ~4x)3 + p4( ~4x)4 + p5( ~4x)5 + p6( ~4x)6

+p7( ~4x)7 + p8( ~4x)8 + p9( ~4x)9:
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E( ~4x) = Fin

0

BBBBBB@

1

0

0

0

1

CCCCCCA
4t+ Fout

0

BBBBBB@

�1

0

0

0

1

CCCCCCA
4t+

F
V

(Cin � C)

0

BBBBBB@

0

1

0

0

1

CCCCCCA
4t

+k0e�
E
R ( 1

T �
1

Tmean )C

0

BBBBBB@

0

�1

0

0

1

CCCCCCA
4t+

F
V

(Tin � T )

0

BBBBBB@

0

0

1

0

1

CCCCCCA
4t

+
H�k0e�

E
R ( 1

T �
1

Tmean )C
�Cp

0

BBBBBB@

0

0

�1

0

1

CCCCCCA
4t+

UA(T � Tc)
V �Cp

0

BBBBBB@

0

0

�1

0

1

CCCCCCA
4t

+
Fc
Vc

(Tcin � Tc)

0

BBBBBB@

0

0

0

1

1

CCCCCCA
4t+

UA(T � Tc)
Vc�cCpc

0

BBBBBB@

0

0

0

1

1

CCCCCCA
4t:

So, the mean of the changes is obtained as follow:

E( ~4x) =

0

BBBBBB@

Fin � Fout

F
V (Cin � C)� k0e�

E
R ( 1

T �
1

Tmean )C

F
V (Tin � T ) + (�H�k0e

�E
R ( 1

T �
1

Tmean )C
�Cp

� UA
�CpV

(T � Tc)
Fc
Vc

(Tcin � Tc) + UcAc
�cCpcVc

(T � Tc)

1

CCCCCCA
4t = F (X1; X2; X3; X4)4t:

The covariance matrix for the changes is given by:

E( ~4x ~4x
0
) =

9X

i=1

pi( ~4x)i( ~4x)0i = p1( ~4x)1( ~4x)01 + :::+ p9( ~4x)9( ~4x)09: (86)
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E( ~4x ~4x
0
) = p1

0

BBBBBB@

1

0

0

0

1

CCCCCCA

�
1 0 0 0

�
+ p2

0

BBBBBB@

�1

0

0

0

1

CCCCCCA

�
�1 0 0 0

�
+ p3

0

BBBBBB@

0

1

0

0

1

CCCCCCA

�
0 1 0 0

�

+p4

0

BBBBBB@

0

�1

0

0

1

CCCCCCA

�
0 �1 0 0

�
+ p5

0

BBBBBB@

0

0

1

0

1

CCCCCCA

�
0 0 1 0

�
+ p6

0

BBBBBB@

0

0

�1

0

1

CCCCCCA

�
0 0 �1 0

�

+p7

0

BBBBBB@

0

0

�1

0

1

CCCCCCA

�
0 0 �1 0

�
+ p8

0

BBBBBB@

0

0

0

1

1

CCCCCCA

�
0 0 0 1

�
+ p9

0

BBBBBB@

0

0

0

1

1

CCCCCCA

�
0 0 0 1

�
:

The computations give

E( ~4x ~4x
0
) = p1

0

BBBBBB@

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1

CCCCCCA
+ p2

0

BBBBBB@

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1

CCCCCCA
+ p3

0

BBBBBB@

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

1

CCCCCCA
+ p4

0

BBBBBB@

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

1

CCCCCCA

+p5

0

BBBBBB@

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

1

CCCCCCA
+ p6

0

BBBBBB@

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

1

CCCCCCA
+ p7

0

BBBBBB@

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

1

CCCCCCA
+ p8

0

BBBBBB@

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

1

CCCCCCA

+p9

0

BBBBBB@

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

1

CCCCCCA
=

0

BBBBBB@

p1 + p2 0 0 0

0 p3 + p4 0 0

0 0 p5 + p6 + p7 0

0 0 0 p8 + p9

1

CCCCCCA

=

0

BBBBBB@

q1 0 0 0

0 q2 0 0

0 0 q3 0

0 0 0 q4

1

CCCCCCA
4t = Z(X1; X2; X3; X4)4t; (87)
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where q1 = p1 + p2 = Fin + Fout; q2 = p3 + p4 = F
V (Cin � C) + k0e�

E
R ( 1

T �
1

Tmean )C; q3 =

p5 + p6 + p7 = F
V (Tin � T ) + (�H�k0e

�E
R ( 1

T �
1

Tmean )C
�Cp

+ UA
�CpV

(T � Tc); q4 = p8 + p9 = Fc
Vc

(Tcin �

Tc) + UcAc
�cCpcVc

(T � Tc).

The SDE for the system can be formulated by using the square root of the obtained covariance

matrix (Z): It follows that the stochastic differential equation is formulated as Equation (88).

dX(t) = F (X(t); �) dt+ Z
1
2 (X(t); �) dB(t); (88)

where X(t) = [X1; X2; X3; X4]0 and B(t) = [B1(t); B2(t); B3(t); B4(t)]0.

Alternatively, one can �nd a matrix C so that CCT = Z: As show by Allen (2017), a matrix C

is not unique and can be obtained directly from the system of ODE as each of its column is the

square root of the transition rates that are given in Table 4. It can be seen that C is 4� 9 matrix

and it is written as,

C =

0

BBBBBB@

a1 a2 0 0 0 0 0 0 0

0 0 a3 a4 0 0 0 0 0

0 0 0 0 a5 a6 a7 0 0

0 0 0 0 0 0 0 a8 a9

1

CCCCCCA
;

where

a1 =
p
Fin; a2 = �

p
Fout ; a3 =

r
F
V

(Cin � C); a4 = �
q
k0e�

E
R ( 1

T �
1

Tmean
)C

a5 =
r
F
V

(Tin � T ); a6 = �

s
H�k0e�

E
R ( 1

T �
1

Tmean
)C

�Cp
; a7 = �

s
UA(T � Tc)

�CpV

a8 =
r
Fc
Vc

(Tcin � Tc); a9 =

s
UA(T � Tc)
�cCpcVc

:

Therefore, the corresponding system of SDE derived from model Equation (35) is given by a

40



system of Equations (89).

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

dV (t) = (Fin � Fout)dt+ a1dB1(t) + a2dB2(t)

dC(t) =
�
F
V (Cin � C)� k0e�

E
R ( 1

T �
1

Tmean )C
�

dt+ a3dB3(t) + a4dB4(t)

dT (t) =
�
F
V (Tin � T )� H�k0e

�E
R ( 1

T �
1

Tmean )C
�Cp

� UA(T�Tc)
�CpV

�
dt+ a5dB5(t) + a6dB6(t)

+a7dB7(t)

dTc(t) =
�
Fc
Vc

(Tcin � Tc) + UA(T�Tc)
�cCpcVc

�
dt+ a8dB8(t) + a9dB9(t):

(89)

Bi(t) � N(0; t); for i = 1; 2; :::; 9 is normally distributed random variable with mean zero and

variance t that also means dBi(t) � N(0; dt): The numerical simulations of the SDE (89) is

carried out by using Euler-Maruyama method.

3.2.2 Endothermic CSTR Stochastic Models Formulation

Similarly, the four scenarios that were early considered for the formulation of the exothermic

CSTR stochastic models are again taken into account in the formulation of the endothermic

CSTR stochastic models. Therefore, the perturbed deformable endothermic CSTR stochastic

models formulated are found in scenarios A-D as follow:

(i) Scenario A: Diffusion part additive

8
>>>>>>>>><

>>>>>>>>>:

dV = (Fin � Fout)dt+ �V dBV (t);

dC =
�
F
V (Cin � C)� k0e�

E
R ( 1

T �
1

Tmean )C
�

dt+ �CdBC(t);

dT =
�
F
V (Tin � T ) + H�k0e

�E
R ( 1

T �
1

Tmean )C
�Cp

+ UA(TH�T )
�HCpHVH

�
dt+ �TdBT (t);

dTH =
�
FH
VH

(THin � TH)� UA(TH�T )
�HCpHVH

�
dt+ �TH dBTH (t);

(90)

where �TH and dBTH (t) are also �uctuation width and wiener process.
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(ii) Scenario B: Diffusion part additive times its corresponding state variable

The system of SDEs for this scenario is given in Equation (91).

8
>>>>>>>>><

>>>>>>>>>:

dV = (Fin � Fout)dt+ �V V dBV (t)

dC =
�
F
V (Cin � C)� k0e�

E
R ( 1

T �
1

Tmean )C
�

dt+ �CCdBC(t)

dT =
�
F
V (Tin � T ) + H�k0e

�E
R ( 1

T �
1

Tmean )C
�Cp

+ UA(TH�T )
�HCpHVH

�
dt+ �TTdBT (t)

dTH =
�
FH
VH

(THin � TH)� UA(TH�T )
�HCpHVH

�
dt+ �THTHdBTH (t)

(91)

(iii) Scenario C: Parametric perturbation

This scenario leads to a system of SDEs written as Equation (92).

8
>>>>>>>>><

>>>>>>>>>:

dV = (Fin � Fout) dt

dC =
�
F
V (Cin � C)� k0e�

E
R ( 1

T �
1

Tmean )C
�

dt� �e�
E
R ( 1

T �
1

Tmean )CdB

dT =
�
F
V (Tin � T ) + H�k0e

�E
R ( 1

T �
1

Tmean )C
�Cp

+ UA
�CpV

(TH � T )
�

dt+ �H�e
�E

R ( 1
T �

1
Tmean )C

�Cp
dB

dTH =
�
FH
VH

(THin � TH)� UHAH
�HCpHVH

(TH � T )
�

dt
(92)

(iv) Scenario D: Transition probability

As per scenario D of the exothermic CSTR stochastic model, the transitions and probabilities

that help in the formulation of the endothermic CSTR stochastic model are shown in Table 5.
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Table 5: Transition probabilities for the endothermic model

Transition Probability
( ~4x)1 = [1; 0; 0; 0]0 p1 = Fin4t
( ~4x)2 = [�1; 0; 0; 0]0 p2 = Fout4t
( ~4x)3 = [0; 1; 0; 0]0 p3 = F

V (Cin � C)4t
( ~4x)4 = [0;�1; 0; 0]0 p4 = k0e�

E
R ( 1

T �
1

Tmean )C4t
( ~4x)5 = [0; 0; 1; 0]0 p5 = F

V (Tin � T )4t

( ~4x)6 = [0; 0; 1; 0]0 p6 = H�k0e
�E

R ( 1
T �

1
Tmean )C

�Cp
4t

( ~4x)7 = [0; 0; 1; 0]0 p7 = UA(TH�T )
V �Cp

4t
( ~4x)8 = [0; 0; 0; 1]0 p8 = FH

VH
(THin � TH)4t

( ~4x)9 = [0; 0; 0;�1]0 p9 = UA(TH�T )
VH�HCpH

4t

Thus, the expectation of the possible changes is given by:

E( ~4x) =
9X

i=1

pi( ~4x)i = p1( ~4x)1 + p2( ~4x)2 + p3( ~4x)3 + p4( ~4x)4 + p5( ~4x)5 + p6( ~4x)6

+p7( ~4x)7 + p8( ~4x)8 + p9( ~4x)9:
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E( ~4x) = Fin

0

BBBBBB@

1

0

0

0

1

CCCCCCA
4t+ Fout

0

BBBBBB@

�1

0

0

0

1

CCCCCCA
4t+

F
V

(Cin � C)

0

BBBBBB@

0

1

0

0

1

CCCCCCA
4t

+k0e�
E
R ( 1

T �
1

Tmean )C

0

BBBBBB@

0

�1

0

0

1

CCCCCCA
4t+

F
V

(Tin � T )

0

BBBBBB@

0

0

1

0

1

CCCCCCA
4t

+
H�k0e�

E
R ( 1

T �
1

Tmean )C
�Cp

0

BBBBBB@

0

0

1

0

1

CCCCCCA
4t+

UA(TH � T )
V �Cp

0

BBBBBB@

0

0

1

0

1

CCCCCCA
4t

+
FH
VH

(THin � TH)

0

BBBBBB@

0

0

0

1

1

CCCCCCA
4t+

UA(TH � T )
VH�HCpH

0

BBBBBB@

0

0

0

�1

1

CCCCCCA
4t:

So, the expectation of the changes in the process is given by:

E( ~4x) =

0

BBBBBB@

Fin � Fout

F
V (Cin � C)� k0e�

E
R ( 1

T �
1

Tmean )C

F
V (Tin � T ) + (H�k0e

�E
R ( 1

T �
1

Tmean )C
�Cp

+ UA
�CpV

(TH � T )
FH
VH

(THin � TH)� UA
�HCpHVH

(TH � T )

1

CCCCCCA
4t = F (X1; X2; X3; X4)4t:

The covariance matrix for the changes in the endothermic process that is represented in Equation

model (36) is also given by:

E( ~4x ~4x
0
) =

9X

i=1

pi( ~4x)i( ~4x)0i = p1( ~4x)1( ~4x)01 + :::+ p9( ~4x)9( ~4x)09: (93)
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E( ~4x ~4x
0
) = p1

0

BBBBBB@

1

0

0

0

1

CCCCCCA

�
1 0 0 0

�
+ p2

0

BBBBBB@

�1

0

0

0

1

CCCCCCA

�
�1 0 0 0

�
+ p3

0

BBBBBB@

0

1

0

0

1

CCCCCCA

�
0 1 0 0

�

+p4

0

BBBBBB@

0

�1

0

0

1

CCCCCCA

�
0 �1 0 0

�
+ p5

0

BBBBBB@

0

0

1

0

1

CCCCCCA

�
0 0 1 0

�
+ p6

0

BBBBBB@

0

0

1

0

1

CCCCCCA

�
0 0 1 0

�

+p7

0

BBBBBB@

0

0

1

0

1

CCCCCCA

�
0 0 1 0

�
+ p8

0

BBBBBB@

0

0

0

1

1

CCCCCCA

�
0 0 0 1

�
+ p9

0

BBBBBB@

0

0

0

�1

1

CCCCCCA

�
0 0 0 �1

�
:

The computation leads to

E( ~4x ~4x
0
) = p1

0

BBBBBB@

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1

CCCCCCA
+ p2

0

BBBBBB@

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1

CCCCCCA
+ p3

0

BBBBBB@

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

1

CCCCCCA
+ p4

0

BBBBBB@

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

1

CCCCCCA

+p5

0

BBBBBB@

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

1

CCCCCCA
+ p6

0

BBBBBB@

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

1

CCCCCCA
+ p7

0

BBBBBB@

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

1

CCCCCCA
+ p8

0

BBBBBB@

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

1

CCCCCCA

+p9

0

BBBBBB@

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

1

CCCCCCA
=

0

BBBBBB@

p1 + p2 0 0 0

0 p3 + p4 0 0

0 0 p5 + p6 + p7 0

0 0 0 p8 + p9

1

CCCCCCA

=

0

BBBBBB@

q1 0 0 0

0 q2 0 0

0 0 q3 0

0 0 0 q4

1

CCCCCCA
4t = Z(X1; X2; X3; X4)4t; (94)
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where q1 = p1 + p2 = Fin + Fout; q2 = p3 + p4 = F
V (Cin � C) + k0e�

E
R ( 1

T �
1

Tmean )C; q3 =

p5 + p6 + p7 = F
V (Tin � T ) + (H�k0e

�E
R ( 1

T �
1

Tmean )C
�Cp

+ UA
�CpV

(TH � T ); q4 = p8 + p9 =
FH
VH

(THin � TH) + UA
�HCpHVH

(TH � T ).

Therefore, stochastic differential equation of the endothermic CSTR formulated using transi-

tions and probabilities is given below as:

dX(t) = F (X(t); �) dt+ Z
1
2 (X(t); �) dB(t); (95)

where X(t) = [X1; X2; X3; X4]0 and B(t) = [B1(t); B2(t); B3(t); B4(t)]0.

From Table 5, it can be seen that C is also 4� 9 matrix which is written as:

C =

0

BBBBBB@

b1 b2 0 0 0 0 0 0 0

0 0 b3 b4 0 0 0 0 0

0 0 0 0 b5 b6 b7 0 0

0 0 0 0 0 0 0 b8 b9

1

CCCCCCA
;

where

b1 =
p
Fin; b2 = �

p
Fout ; b3 =

r
F
V

(Cin � C); b4 = �
q
k0e�

E
R ( 1

T �
1

Tmean
)C

b5 =
r
F
V

(Tin � T ); b6 =

s
H�k0e�

E
R ( 1

T �
1

Tmean
)C

�Cp
; b7 =

s
UA(TH � T )

�CpV

b8 =
r
FH
VH

(THin � TH); b9 = �

s
UA(TH � T )
�HCpHVH

:

Therefore, the corresponding system of SDEs derived from model Equation (36) is given by the
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system of stochastic differential equations (96).

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

dV (t) = (Fin � Fout)dt+ b1dB1(t) + b2dB2(t);

dC(t) =
�
F
V (Cin � C)� k0e�

E
R ( 1

T �
1

Tmean )C
�

dt+ b3dB3(t) + b4dB4(t);

dT (t) =
�
F
V (Tin � T )� H�k0e

�E
R ( 1

T �
1

Tmean )C
�Cp

+ UA(TH�T )
�CpV

�
dt+ b5dB5(t) + b6dB6(t)

+b7dB7(t);

dTH(t) =
�
FH
VH

(THin � TH)� UA(TH�T )
�HCpHVH

�
dt+ b8dB8(t) + b9dB9(t);

(96)

where Bi(t) � N(0; t) is also normally distributed random variable with mean zero and vari-

ance t or dBi(t) � N(0; dt) with i = 1; 2; :::; 9: The numerical simulations of the SDE (96) is

again carried out by using Euler-Maruyama method.

3.3 Parameters Estimation, Sensitivity and Uncertainty Analysis Methods

This Section deals with the descriptions of the least squares and Markov chain Monte Carlo

methods used for parameters estimation as well as the sensitivity and uncertainty analysis

methods used for quantifying the effect of estimated model parameters’ variation on models’

response.

3.3.1 Least Squares Method

The models that are presented in Equations (35) and (36) are of the time dependent differential

equations with the following form:

dXp

dt
(Xp; �; ti) = 0;

where p is the number of state variables and Xp is the vector of state variables. For the model

Equations (35) and (36), p = 4, ti is the discrete time sampling, Xp = [V;C; T; Tc]0 and Xp =

[V;C; T; TH ]0 are state variables of both models respectively, and � is the set of parameters

of the models to be identi�ed. So, in this dissertation, fourteen unknown parameters to be

identi�ed for models (35) and (36) are � = [Fout; F; k0; E; Tmean; H�; �; Cp; U; A; Fc; Vc; �c; Cpc ]

and � = [Fout; F; k0; E; Tmean; H�; �; Cp; U; A; FH ; VH ; �H ; CpH ]; respectively. The least squares

method is the classical optimization methods that minimizes the sum of squared residuals of the

given models. Suppose Yp;i is a predictive model and g(Xp;i; �; ti) is the numerical solutions.
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Then the residuals de�ned as rp;i can be computed as follows:

rp;i = Yp;i � g(Xp;i; �; ti):

Thus, the sum of squared residuals function is obtained by taking the sum of squares of rp;i:

Mathematically it is written as:

S:S:R =
mX

i=1

(rp;i)2 =
mX

i=1

(Yp;i � g(Xp;i; �; ti))2: (97)

The least squares method searches the best �tting parameters that minimise the S:S:R function

which is taken as the likelihood function. This implies that the �tting set of parameters �̂ of the

model Equations (35) and (36) can be obtained after solving Equation (98)

@(S:S:R)
@�

= 0 �
@ (
Pm

i=1(Yp;i � g(Xp;i; �; ti))2)
@�

= 0; (98)

simultaneously. Most of chemical processes are intractable and complex due to their non-

linearity behaviours and the number of parameters involved. In such situation, it is dif�cult

to �nd the exact solution for Equation (98). For model Equations (35) and (36), there are four-

teen parameters. This implies that there should be fourteen equations. Solving those equations

analytically, simultaneously, is a complicated task. As a simpli�cation, the numerical simula-

tions become a usual way of solving that problem.

3.3.2 Markov chain Monte Carlo Method

Markov chain Monte Carlo (MCMC) is one of the numerical methods that are presently used

by most researchers as statistical and Bayesian techniques to identify the complex differential

equations’ parameters that �t the dynamics of chemical and biological models (Valderrama Ba-

hamondez et al., 2019; Niederberger, 2012; Masoumi et al., 2013). The Bayesian inference has

been quali�ed to be a very powerful statistical technique and has been widely used to identify

the model’s parameters � which are obtained after evaluating the parameters’ posterior den-

sity p(�=Xp1 ; Xp2 ; :::; XpN ); where Xp1 ; Xp2 ; :::; XpN are measurement points of the chemical

process.

The overall implementation process, as stated in Remo et al. (2018), starts from proposing a
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suitable distribution, called proposal distribution, and drawing samples from it. The proposal

distribution sometimes depends on the present value to form the chain, which in turn is consid-

ered as a Markov chain. The acceptance or rejection mechanisms are employed in the simulation

to rectify the trial proposal distribution which ends up with the target distribution. In the end,

a simulated chain of parameters (drawn samples, �1; �2; :::; �N ) can be used to approximate the

intractable integral (distribution), as

E [f(�)=Xp1 ; Xp2 ; :::; XpN ] �
1
N

NX

j=1

f(�j); (99)

where E [f(�)=Xp1 ; Xp2 ; :::; XpN ] is the expectation, and f(�j) is the density function. Ac-

cording to Mbalawata et al. (2013) and Laine (2008), Metropolis algorithm, Metropolis Hast-

ings, Hamiltonian Monte Carlo, Gibbs Sampler, Reversible Jump Monte Carlo, Metropolis

Adjusted Langevin, Slice Sampling, Multiple Try Metropolis, and Delayed Rejection Metropo-

lis are among the most used MCMC algorithms. But, in this dissertation, the adaptive version

of Delayed Rejection Metropolis (DRAM) which is presented in Algorithm 3.1 will be used

to estimate the unknown parameters of the model Equations (35) and (36). This method has

nice features of tuning the reliable proposal distribution without de�ning it manually (Remo

et al., 2018; Ndanguza et al., 2019). This method overcomes a tedious task of trial and error

of tuning a suitable proposal distribution that may appear in the Metropolis-Hastings technique

(Mbalawata et al., 2015). The Gaussian distribution as a proposal distribution with initial mean

0 and covariance �0 is used. For a start up, MCMC needs initial parameter values which are

computed by using the classical least squares method.

Algorithm 3.1 (1) Draw the initial point �0 from initial distribution p0(�). Set an initial non-

adaptive period N0 and initial covariance matrix �0:

(2) For j = 1; 2; ::: perform the following:

(i) Sample a current point �̂ from the proposal distribution q(�̂=�j�1)

(ii) Compute the acceptance probability using

�(�j�1; �̂) = minf1;
p(�̂=Xp1 ; Xp2 ; :::; XpN )q(�j�1=�̂)
p(�j�1=Xp1 ; Xp2 ; :::; XpN )q(�̂=�j�1)

g
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(iii) Acceptance/rejection rule by setting

�j =

8
><

>:

�̂; ifu < �(�j�1; �̂); whereu � U(0; 1)

�j�1; otherwise:

(iv) If n0 6 j (or after every nth
0 iterations), then update the covariance matrix by using

the formula

�j = Cov(�0; �1; :::; �j) + �Id;

where Id is an d� d identity matrix and � is a small positive number that makes the

matrix �j to be non-singular matrix (Haario et al., 1999, 2001; Remo et al., 2018).

(v) j  j + 1:

3.3.3 Sensitivity and Uncertainty Analysis Method

Sensitivity analysis is a technique that quanti�es the uncertainty in the responsive model from

the uncertainties of input initial conditions and parameters. Thus, to validate the proposed de-

terministic model Equations (35) and (36), the global sensitivity analysis of the models which

is necessary and important tool to quantify the effects of uncertainties of the parameters’ varia-

tions on the responsive variables of the model is performed. Based on the nature of a formulated

mathematical model, various methods for the sensitivity analysis have been proposed. For lin-

ear mathematical models, the standardized linear regression correlation coef�cients, the partial

correlation coef�cients and Pearson correlation coef�cients are suf�cient to draw a conclusion

about the model uncertainties. For non-linear models, methods that are based on decomposition

of the output variance of the model like sobol method are used to quantify the model uncertainty

but this is applicable for non-monotonic models. For the case of nonlinear and monotonic mod-

els, spearman rank correlation coef�cients, standardized rank regression coef�cients and the

partial rank correlation coef�cients (PRCCs) are preferably to be used but PRCCs are the most

accurate and adequate to measure and quantify the uncertainty in the outputs of the model

(Marino et al., 2008). PRCCs vary in the range of – 1 with signi�cant correlation for the values

approaching -1 or +1 (values � 0:5 or � �0:5) and low correlation for the values that are far

from -1 or +1 (values < 0:5 or > �0:5). The model systems that are shown in Equations (35)

and (36) are nonlinear and monotonic, so the Latin Hypercube Sampling ((LHS) method with
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the PRCCs are to be implemented to qualitatively and quantitatively performing the sensitivity

analysis to examine the effects of estimated parameters on model responsive variables.

(i) Latin Hypercube Sampling and Partial rank correlation coef�cients

The following are three steps for implementing both LHS and PRCCs.

Step 1: Sampling model parameters from a speci�ed distributions.

Consider a mathematical model given by

dX
dt

= h(X; �); (100)

where X 2 Rm is an mth-dimensional state space and � 2 Rn is an nth-dimensional parameter

space, then the expected outputs of the model is given by

y = f(X; �): (101)

For example, let the parameter space be R2 means � = (a; b) and then let the sample size beN =

4. So, four samples of each parameter is to be sampled from a certain distribution. Consider two

cases of distributions where uniform distribution and normal distribution are chosen to be used

as proposal distributions. Minimum and maximum values of the parameter are needed for the

case of uniform distribution and mean and standard deviation of the parameter are also needed

for the case of normal distribution.

Let a be sampled from a uniform distribution that is to say a � U(amin; amax); so the picture of

its samples can be as follow:

Let the parameter b be sampled from the normal distribution, that is to say b � N(�b; �b); then

the picture of its samples will be looking like
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Step 2: Obtaining LHS Matrix

The LHS matrix of the sampled parameters is a matrix that contains all samples of parameters

and is for example given by X; where

X =

0

BBBBBB@

a1 b1

a2 b2

a3 b3

a4 b4

1

CCCCCCA
(102)

and the output matrix Y is given by row matrix that contains model responses from sampled

parameters obtained in matrix X: So,

Y =

2

6666664

y1 = f(a1; b1) = value1

y2 = f(a2; b2) = value2

y3 = f(a3; b3) = value3

y4 = f(a4; b4) = value4

3

7777775
(103)

The ranking for X and Y matrices is based on low values obtained for samples. For example,

the ranking matrix XR can be as:

XR =

2

6666664

2 3

4 1

1 2

3 4

3

7777775
(104)
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and the ranking matrix YR as:

YR =

2

6666664

3

4

1

2

3

7777775
(105)

Step 3: Computing the correlation coef�cients

The possibility of computing the Pearson, Spearman and the partial rank correlation coef�cients

are in the following way: Pearson ((X; Y )), Spearman ((XR; YR)) and PRCC ((XR; YR)).

The correlation measures the magnitude of the linear association between model outputs and

model inputs. Let xi represents inputs for i = 1; 2; :::; k and y be the outputs. Then the measure

of the linear association between xi and y is given by:

Rxi;y =
Cov(y; xi)p
Var(y)Var(xi)

; (106)

with Cov(y; xi) =
PN

j=1(xij��x)(yj��y) being the covariance and Var(y) =
PN

j=1(yj��y)2 and

Var(xi) =
PN

j=1(xij��x)2 being variances of outputs and inputs respectively. Partial correlation

coef�cient (PCC) determines the linear relationship between the input xi and the output y after

excluding other linear effects of the remaining inputs. So, the PCC is obtained by computing

the correlation coef�cient between two residuals xi � �xi and y � �y; where

�xi = a0 +
kX

p=16=i

apxp (107)

and

�y = b0 +
kX

p=16=i

bpxp (108)

are the linear regression models. Like PCC, PRCC performs a PCC on a rank-transformed data

xi and y with the same procedure of computing the correlation between residuals using built

regression models as presented in Equations (107) and (108). Thus, these techniques are used

to perform the sensitivity and uncertainty analysis of parameters estimates of model Equations

(35) and (36) on models’ response.
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3.3.4 Euler-Maruyama Method

The general Euler-Maruyama numerical scheme for a single SDE

dX(t) = f(X(t))dt+ g(X(t))dB(t) (109)

is given by the iterative formula in Equation (110),

Xn+1 = Xn + �tf(Xn) + g(Xn)(B(�n+1)�B(�n)): (110)

The Euler-Maruyama scheme for the system of SDEs which are in Equation (83), and can be

adopted for any of the rest of SDEs appearing in this dissertation is described in Equation (111)

as: 8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

Vn+1 = Vn +
�
Fin � Fout

�
�t + �V Vn

�
BV (�n+1)�BV (�n)

�

Cn+1 = Cn +
�
F
Vn

(Cin � Cn)� k0e�
E
R ( 1

Tn
� 1

TmeanCn
�

�t

+�CCn
�
BC(�n+1)�BC(�n)

�

Tn+1 = Tn +
�
F
Vn

(Tin � Tn)�
k0e�

E
R ( 1

Tn
� 1

TmeanCn
�Cp

�
UA(Tn � Tcn)

�CpVn

�
�t + �TTn

�
BT (�n+1)�BT (�n)

�

Tcn+1 = Tcn +
�
Fc
Vc

(Tcin � Tcn) +
UA(Tn � Tcn)

�cCpcVc

�
�t

+�TcTcn

�
BTc(�n+1)�BTc(�n)

�

(111)
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CHAPTER FOUR

RESULTS AND DISCUSSIONS

The numerical analysis of all models obtained in Chapter 3 of this dissertation are well analysed,

explained and discussed in this chapter. Results obtained and its discussions are split into �ve

main parts, where the �rst part is found in Section 4.1 and deals with results and discussions

of model Equation (35) and the second part contains results and discussions of model Equation

(36) which are in Section 4.2. The third and the fourth part of this chapter that are in Section 4.3

and Section 4.4 discuss results of stochastic models that describe the dynamics of CSTR with

exothermic reactions ( model Equations (83), (84), (85) and (89)) and the dynamics of CSTR

with endothermic reactions (Equations (90), (91), (92) and (96)) respectively while Section 4.5

which is the last part shows the real life application of CSTRs.

For testing the formulated models, synthetic data are used. The idea here was to see if the

model, together with the numerical methods for parameters estimation can lead to parameters

identi�ability.

4.1 Numerical Analysis and Parameters Estimation of Deterministic Model for Exother-
mic CSTR

To obtain the numerical solutions of the model Equation (35) while performing numerical anal-

ysis, Runge-Kutta method of fourth order has been used. The least squares and Markov chain

Monte Carlo methods have been also used to estimate unknown parameters of CSTR model.

Furthermore, sensitivity and uncertainty analysis was carried out to validate the formulated de-

terministic model by identifying parameters which are very sensitive to the model output. The

software employed during numerical analysis is MATLAB of version R2016b.

4.1.1 Numerical Solutions

Due to lack of actual information (real data) about the functionality of CSTR, the model Equa-

tion (35) was simulated by using values that are found in Table 6 and Table 7, where nineteen

out of twenty six parameters equivalent to 73% were obtained from literature, 12% of them

equivalent to three parameters out of twenty six have been estimated and four of them equals
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15% were state variables and their values have been simulated. The discrete sampling time

points used were 100 and 100 � 4 numerical solutions of the model have been obtained. The

numerical results from subplot 1 of Fig. 6 have revealed that the volume of tank reactor in-

creases from 100 m3 to approximately 126 m3 and this is an indication of having non-constant

�ow rates of reactants due to change of both inlets and outlets. Figure 6 have shown that the

reactants were consumed inside the reacting tank as its concentration approached zero. This has

shown a complete mixing and at the same time symbolised a non-partial conversion of reactants

into products that may lead to time residence distribution analysis as one of the inconveniences

of CSTRs. Along this process, there was a covering cooling jacket that communicated with

the reacting tank through a designed cross-sectional area (A) of 0:015m2, to cool down the ris-

ing temperature inside the reacting tank. The covering cooling jacket contained the substance

whose temperature was initially lower than the starting temperature of the reacting tank to dis-

able the explosion of the reaction. During this process, the temperature of the reacting tank rose

from 298:35oK to its operating working temperature that was 373:48oK: Meanwhile, the cool-

ing temperature of the covering cooling jacket also rose from its initial temperature (288:15oK)

until it reached 363:14oK. As a result, if this scenario is selected to be a piloting tank, then all

the simulated information and the working conditions that are described above have to be taken

into consideration quantitatively. The numerical solutions of the model Equation (35) and are

obtained in Fig. 6 below,

Figure 6: Numerical solutions of model Equation (35)
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Table 6: Table of variables, parameters and constants

Param symbol (unit) Param name Value Reference
Cin(kmol min�1m�3) Feeding con-

centration
316.8 Muhirwa et al. (2017)

C0(kmol min�1m�3) Initial concen-
tration

316.8 Muhirwa et al. (2017)

C(kmol min�1m�3) Mixture con-
centration

State vari-
able

to be simulated

Tin(oK) Feeding tem-
perature

341.37 Karimi et al. (2015)

T0(oK) Initial tempera-
ture

298.35 Muhirwa et al. (2017)

T (oK) Mixture tem-
perature

State vari-
able

to be simulated

H�(kcal kmol�1) Enthalpy �1004:3 �
103

Muhirwa et al. (2017)

Tc0(oK) Initial cool
temperature

299.97 Lu et al. (2017)

Tcin(oK) Feed cool tem-
perature

293 Vojtesek et al. (2008)

Tc(oK) Jacket tempera-
ture

State vari-
able

to be simulated

R(kJ kmol�1 oK�1) Gas constant 8.314 Muhirwa et al. (2017)
V0(m3) Initial tank vol-

ume
100 Aboelela et al. (2018)

V (m3) Volume of the
tank

State vari-
able

to be simulated

k0(min�1) Pre-Arrhenius
frequency

0.9 Muhirwa et al. (2017)

E(kJ kmol�1) Activation en-
ergy

0.5 Muhirwa et al. (2017)

Tmean(oK) Reference tem-
perature

298.15 Muhirwa et al. (2017)
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Table 7: Continuation of table of variables, parameters and constants

Param symbol (unit) Param name Value Reference
F = Fin(m3 min�1) Feeding veloc-

ity
130�10�2 Muhirwa et al. (2017)

�(kg m�3) Density 1000 Muhirwa et al. (2017)
Cp(kcal kg�1 oK�1) Heat capacity 4186 Muhirwa et al. (2017)
U(kJ min�1 oK�1 m�2) Heat transfer

coef�cient
100 000 Muhirwa et al. (2017)

A(m2) Cross-sectional
area

0.015 Muhirwa et al. (2017)

Fc(m3 min�1) Cooling veloc-
ity

46:5 �
10�6

to be estimated

Vc(m3) Cooling reactor
volume

50� 10�6 to be estimated

�c(kg m�3) Density of the
coolant

1000 Aboelela et al. (2018)

Cpc(kcal kg�1oK�1) Cooling heat
capacity

4:168�103 Muhirwa et al. (2017)

Fout(m3min�1) Outlet velocity 130�10�6 to be estimated

Note: Param means parameter

4.1.2 Least Squares Results

For estimating the model parameters by using Least Squares, the numerical solutions ob-

tained in Section 4.1.1 are corrupted by using �ve different noise intensities which are

[0:01; 0:05; 0:1; 0:5; 1] to obtain the experimental datasets taken as the real measurements of

CSTR system. This technique is used for identifying the unknown physical system as an in-

verse problem. As results, the Least Squares estimates of parameters were computed �ve times

by varying the intensity of noise �: It means the parameters of model Equation (35) were esti-

mated �ve times; when � = [0:01; 0:05; 0:1; 0:5; 1]: After estimation of parameters, the model

was �tted with various values of estimates. Figures 7, 8, 9, 10, 11 show the experimental data

with �ve �tted graphs while Tables 8, 9, 10, 11, 12 show parameters estimates for �ve different

values of �:
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Figure 7: Fitted model when � = 0:01

Based on the results in Table 8, all estimated parameter values are in good agreement with their

initial values. But also it is observed from Fig. 7 that the distance between the predictive so-

lutions (in red color) and the exact model solutions (blue color) seems to be minimised, and

hence the system model is �tting the measurements very well, simply because both colors are

in coincidence. One may point out that if the model is in�uenced by the noise of magnitude

� = 0:01, the exothermic reacting tank’s model still performs very well and provide the optimal

converging solutions. It can be seen that the volume of the reactor is linearly increasing from

100 m3 to almost 126 m3: The concentration of the reactant is exhausted towards zero which

describes the total conversion of reactant into product. As the reaction goes on, the temperature

inside the reacting tank increases from 298.35 K to 373.48 K and be cooled by the cooling sys-

tem to avoid the reaction explosion. During the cooling process the temperature in the cooling

jacket increases from 288.15 K to 363.14 K and both CSTR and jacket’s temperatures stabilise

after 5 minutes of the reaction. The least squares results reveal that the estimated values of the

volume, concentration, temperature and cooling temperature of the CSTR system are the same

as numerical results of the model.
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Table 8: Table of estimated model parameters when � = 0:01

Parameter symbol Parameter Physical
Meaning

Initial value Estimated

Fout Outlet Velocity 130� 10�6 120:271� 10�6

F Feeding Velocity 130� 10�2 126:799� 10�2

k0 Pre-Arrhenius Fre-
quency

0.9 0.896129106

E Activation Energy 0.5 0.555990875
Tmean Reference Temperature 298.15 280.5678233
H� Enthalpy �1004:3� 103 -1 004 013.891
� Density 1000 1009.793374
Cp Heat Capacity 4186 4140.326
U Heat Transfer Coef�-

cient
100 000 100 948.8166

A Cross-sectional Area 0.015 0.014337536
Fc Cooling Velocity 46:5� 10�6 48:0� 10�6

Vc Cooling Reactor Vol-
ume

50� 10�6 51:9� 10�6

�c Density of the Coolant 1000 973.7494767
Cpc Cooling Heat Capacity 4168 4044.644492

The experimental data obtained by using � = 0:05 give the results that is shown in Fig. 8 and

Table 9.

Figure 8: Fitted model when � = 0:05

According to the results in Table 9, all parameters are also converging to its initial values and

the measurements are highly �tting the exothermic CSTR model as can be viewed from Fig.
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8. Thus the noise of intensity � = 0:05 still does affect the optimality working conditions of

the proposed exothermic CSTR deterministic model as all four state variables of the system are

well �tted by the experimental data. The volume and the concentration of the CSTR are well

�tted and vary from 100 m3 to 126m3 and 316 towards zero respectively. The Least Squares

results show that the temperature and the cooling temperature of reacting and cooling tanks are

very close to their numerical solutions which vary from 298.35K to 373.48K and from 288.15

K to 363.14 K, respectively.

Table 9: Table of estimated model parameters when � = 0:05

Parameter symbol Parameter Physical
Meaning

Initial value Estimated

Fout Outlet Velocity 130� 10�6 130:016� 10�6

F Feeding Velocity 130� 10�2 130:09� 10�2

k0 Pre-Arrhenius Fre-
quency

0.9 0.900553

E Activation Energy 0.5 0.493183
Tmean Reference Temperature 298.15 298.147
H� Enthalpy �1004:3� 103 �1026:03� 103

� Density 1000 1017.16
Cp Heat Capacity 4186 4231.14
U Heat Transfer Coef�-

cient
100 000 100 681

A Cross-sectional Area 0.015 0.0151979
Fc Cooling Velocity 46:5� 10�6 46:7705� 10�6

Vc Cooling Reactor Vol-
ume

50� 10�6 49:6872� 10�6

�c Density of the Coolant 1000 987.751
Cpc Cooling Heat Capacity 4168 4134.6

Figure 9 and Table 10 show the least square results of model Equation (35) after using experi-

mental data obtained via � = 0:1:
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Figure 9: Fitted model when � = 0:1

Similarly, the results in the Table 10 show that all model parameters are fairly converging to

their initial values and the measurements are somehow close to the so-called real exothermic

CSTR deterministic model. This is a sign of a fair �tting as can be viewed from Fig. 9. Thus

the noise of intensity � = 0:1 also does not highly affect the optimality working conditions of

the formulated exothermic CSTR deterministic model. The numerical results for the volume

and the concentration and their corresponding Least Squares results are the same. However,

the Least Squares results for the temperature become slightly lower and start from 298.35 K

to approximately 370 K and the Least Squares results for cooling temperature become greater

than the corresponding numerical results and range from 288.15 K to approximately 364 K.
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Table 10: Table of estimated model parameters when � = 0:1

Parameter symbol Parameter Physical
Meaning

Initial value Estimated

Fout Outlet Velocity 130� 10�6 153:489� 10�6

F Feeding Velocity 130� 10�2 128:400� 10�2

k0 Pre-Arrhenius Fre-
quency

0.9 0.896055403

E Activation Energy 0.5 0.441415996
Tmean Reference Temperature 298.15 304.7208549
H� Enthalpy �1004:3� 103 -907 216.0504
� Density 1000 1045.936659
Cp Heat Capacity 4186 3835.799667
U Heat Transfer Coef�-

cient
100 000 111 325.8035

A Cross-sectional Area 0.015 0.016932493
Fc Cooling Velocity 46:5� 10�6 32:9� 10�6

Vc Cooling Reactor Vol-
ume

50� 10�6 52:1� 10�6

�c Density of the Coolant 1000 833.0925744
Cpc Cooling Heat Capacity 4168 4442.755181

The investigation of how the experimental data obtained by using perturbation constant � = 0:5

�ts the formulated model in Equation (35) is shown in Fig. 10 and their corresponding estimated

parameters are found in Table 11.

Figure 10: Fitted model when � = 0:5

From the results presented in Table 11 and from Fig. 10, it is seen that the parameters are fairly
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converging and only two state variables (reactor volume and concentration) are well �tted by the

experimental data while the other two state variables namely, the temperature and the cooling

temperature are not well �tted. Therefore, on one hand the noise of intensity � = 0:5 greatly

affects the temperature of the reacting tank and the cooling temperature of the cooling jacket

as compared with the volume and the concentration on the other hand. Physically, the Least

Squares results for the temperature and the cooling temperature becomes very lower than their

corresponding numerical results and range from 298.35 k to approximately 362 K and 288.15

K to approximately 350 K, respectively.

Table 11: Table of estimated model parameters when � = 0:5

Parameter symbol Parameter Physical
Meaning

Initial value Estimated

Fout Outlet Velocity 130� 10�6 128:726� 10�6

F Feeding Velocity 130� 10�2 126:662� 10�2

k0 Pre-Arrhenius Fre-
quency

0.9 0.930134156

E Activation Energy 0.5 0.492520992
Tmean Reference Temperature 298.15 287.5494455
H� Enthalpy �1004:3� 103 -987 991.6235
� Density 1000 1096.742511
Cp Heat Capacity 4186 4203.713355
U Heat Transfer Coef�-

cient
100 000 96 750.38837

A Cross-sectional Area 0.015 0.014126652
Fc Cooling Velocity 46:5� 10�6 49:3� 10�6

Vc Cooling Reactor Vol-
ume

50� 10�6 46:4� 10�6

�c Density of the Coolant 1000 1031.560661
Cpc Cooling Heat Capacity 4168 3950.953476

Finally, the noise of intensity � = 1 is used to produce experimental data for which the obtained

�tted model and the estimated model parameter values are pointed out in Fig. 11 and Table 12

accordingly.
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Figure 11: Fitted model when � = 1

From Fig. 11, it is seen that the noise intensity, � = 1 highly affects the system temperature

and the cooling temperature. However, the reason behind it cannot be explained to the best of

knowledge of researchers. So, the only explanation is that if a random noise of intensity � = 1

is presented in the formulated exothermic CSTR model, this will highly affect the optimality

working conditions of the reacting tank and we can expect defective products from the tank

as a consequence. Therefore, if one chooses to design a reacting tank that implements the

proposed exothermic CSTR model, there must an additional design in such a way that the

noise of intensity which is closer or greater than unity is sensed and has to be directly �ltered

from the working process. Most of all optimal parameter values somewhat deviate from its

initial parameter values which resulted in poor model �tting as can be explored from the results

in Table 12 and from Fig. 11. The poor �tting results are due to introducing high value of

uncertainty in the numerical solutions of the CSTR model Equation (35).
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Table 12: Table of estimated model parameters when � = 1

Parameter symbol Parameter Physical
Meaning

Initial value Estimated

Fout Outlet Velocity 130� 10�6 123:66� 10�6

F Feeding Velocity 130� 10�2 158:502� 10�2

k0 Pre-Arrhenius Fre-
quency

0.9 1.2701104

E Activation Energy 0.5 0.446481364
Tmean Reference Tempera-

ture
298.15 178.5052479

H� Enthalpy �1004:3� 103 -999 186.9285
� Density 1000 899.102053
Cp Heat Capacity 4186 3144.842237
U Heat Transfer Coef�-

cient
100 000 77 062.50444

A Cross-sectional Area 0.015 0.008857562
Fc Cooling Velocity 46:5� 10�6 67:0� 10�6

Vc Cooling Reactor Vol-
ume

50� 10�6 50:3� 10�6

�c Density of the
Coolant

1000 1267.008926

Cpc Cooling Heat Capac-
ity

4168 4473.862286

4.1.3 Markov Chain Monte Carlo Results

The very important and necessary question that one keeps in mind while using MCMC method

is to know whether or not the method provides convergent and accurate posterior samples of

parameters. Therefore, a varied number of MCMC diagnostic tests has been used.

4.1.4 MCMC diagnostic tests

There are several common statistical and graphical convergence tests for the MCMC method

that are found in Brooks (1998); Sinharay (2003); Roy (2020); Sharma (2017). In this disserta-

tion, the trace (time series plots), scatter plots, autocorrelation plots, probability plots (quantile-

quantile plots) and the marginal density distributions for each drawn sample of the parameters

were used to identify the accuracy of the formulated model parameters and diagnose whether

or not the convergence of the generated MCMC samples is reached. The identi�ability of

66



the model parameters is mainly based on the convergence of the MCMC method. For model

Equation (35), the initial number of samples generated was 100 000, Gaussian distribution was

considered to have mean 0 and covariance matrix �0 = 0:00001�Ip�ppp ; where p represents the

number of parameters to be identi�ed, and Ip�p is the p � p identity square matrix. The least

squares results obtained when � = 0:05 have been used as prior values for the MCMC method.

(i) Trace plots

One way of analysing the convergence of the MCMC method is to check the mixing of the

generated sample of posteriors through trace plots. If the generated chain of posteriors becomes

stationary for several initial values, and there are no obvious spikes, then this is an indication of

having a good mixing which is a good sign of convergence. From Fig. 12, it can be observed

that the mixing of samples with the exception of Fc and Vc is very good so the chain converges,

and the sampling parameter values of posteriors are means (centres) of the generated chain of

samples.

Figure 12: MCMC samples of posteriors

(ii) Scatter plots (pairs)

A poor convergence of MCMC method inventively leads to high correlation between estimated

parameters. Since there are fourteen parameters to be identi�ed, then there are 91 scatter plots

for which we need to investigate if there are strong correlations between them. Due to the big

number of parameters, it has been able to explore the scatter plots for the �rst ten parameters and
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Fig. 13 shows how couples of posterior samples of the selected parameters correlate each other.

According to Fig. 13, it is observed that there is no high correlation between pairs of estimated

parameters and so the parameters of the model Equation (35) are adequately identi�ed.

Figure 13: MCMC pairs plot of samples

(iii) Autocorrelation plots

Figure 14 determines and examines the correlation between consecutive samples during pos-

teriors chain sampling. From Fig. 14, it is explored that the coef�cients of autocorrelation

functions of all generated samples tend to zero as the number of lags increases and get station-

ary around zero after 100 lags. That is an indication of having a good mixing. Bad mixing will

conventionally lead to non-decaying coef�cients of autocorrelation functions.

Figure 14: MCMC autocorrelation plots of sampled posteriors
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(iv) Histograms for posterior distributions

To be sure that posterior distributions of parameters are well sampled from a suitable proposal

distributions, one has to plot distributions of all generated chains of posterior parameters and

observe if those chains are fairly following normal distributions. It can be seen from Fig. 15

that all of them do follow the mentioned distribution except for the chains of parameter Fc and

Vc which are somehow right-skewed.

Figure 15: MCMC histograms plots of posterior samples

(v) Marginal density of posterior distributions

Another diagnostic test is to plot the posteriors density distributions. Normally for a better

mixing and for a well sampled posteriors, we expect the histograms of all density estimations

to follow a Gaussian distribution. Figure 16 depicts that density distributions of all fourteen

estimated parameters follow Gaussian distribution and their values are taken as means of distri-

butions of the chains except for the values of Fc and Vc.
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Figure 16: MCMC density distributions plots of sampled chain of parameters

(vi) Empirical probability plot of posteriors

To explore whether the empirical quantiles of posteriors are matching with the theoretical quan-

tiles also requires probability plots of posteriors or quantile-quantile plots (Q-Q plots). Thus,

Fig. 17 illustrates the Q-Q plots for the model Equation (35).

Figure 17: Probability plots for 100 000 posterior samples for each of identi�ed fourteen model
parameters of Equation (35).
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As previously mentioned, it can be seen from this Fig. 17 that quantiles of posteriors of param-

eters Fc and Vc are not matching with their theoretical quantiles very well in the interval �5 to

0.

Table 13: MCMC and LSQ estimated parameters of the model Equation (35) and their and statistical
inferences

Param Initial values LSQ Post mean
Fout 130� 10�6 130:016� 10�6 130:015� 10�6

F 130� 10�2 130:09� 10�2 129:971139� 10�2

k0 0.9 0.900553 0.900592376
E 0.5 0.493183 0.493486288
Tmean 298.15 298.147 298.151888471
H� �1004:3� 103 �1026:03� 103 �1028032:329702401
� 1000 1017.16 1026.121280804
Cp 4186 4231.14 4217.368624072
U 100 000 100 681 100 098.502552738
A 0.015 0.0151979 0.014959065
Fc 46:56� 10�6 46:7705� 10�6 74:7936� 10�5

Vc 50� 10�6 49:6872� 10�6 76:2673� 10�5

�c 1000 987.751 994.859555082
Cpc 4186 4134.6 4163.918586616
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Table 14: Table of standard deviation, Markov chain error, posterior median and credible interval

Std MCerr Post Median Credible
Interval

7:32 �
10�8

1:0633�10�9 130:016� 10�6 [130:015�
10�6; 130:16�
10�6]

0.00093 3:9735�10�5 129:9704569�10�2 [129:9705396�
10�2; 129:9716882�
10�2]

0.000951 2:2856�10�5 0.900596750 [0.900586482,
0.900598270]

0.0009525 1:7754�10�5 0.493470050 [0.493480384,
0.493492191]

0.00095466 1:9926�10�5 298.151879315 [298.151882554,
298.151894388]

0.00095973 3:2217�10�5 �1028032:329677610 �[1028032:329708349; 1028032:3296966452]
0.00094236 2:9081�10�5 1026.121304498 [1026.121274963,

1026.121286644]
0.00098619 2:1133�10�5 4217.368601824 [4217.368617960,

4217.368630185]
0.00091663 4:2388�10�5 100 098.502551528 [100

098.502547056,
100
098.502558419]

0.00095668 3:0706�10�5 0.014962113 [0.014953136,
0.014964995]

0.00058698 3:7635�10�5 62:4641� 10�5 [74:4298�
10�5; 75:1574�
10�5]

0.00059791 3:2879�10�5 63:7067� 10�5 [75:8967�
10�5; 76:6379�
10�5]

0.00092534 2:464� 10�5 994.859566589 [994.859549347,
994.859560817]

0.00095621 1:7679�10�5 4163.918608754 [4163.918580689,
4163.918592542]
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Table 15: Table of autocorrelation time, geweke, kurtosis and skewness

tau Geweke Kurtosis Skewness
41.003 0.99994 2.9626 �0:0630
62.713 0.99997 3.0915 �0:0225
50.329 0.99994 3.0930 �0:0016
46.313 0.9985 3.1854 0.0934
58.812 1 3.0988 �0:0220
57.28 1 3.1340 0.0125
59.644 1 3.0811 �0:0299
48 1 3.3398 0.0578
69.113 1 3.2362 0.0790
53.978 0.99458 3.0965 �0:0279
85.568 0.21093 3.9661 1.0355
69.882 0.41264 3.8227 1.0014
63.819 1 3.2461 0.0145
45.604 1 3.0466 �0:0150

Results that are presented in Tables 13, 14 and 15 show the estimated parameters values and

statistical quanti�cations of the model Equation (35). Among the used statistical quanti�ca-

tions measure of the parameter values, there are measure of central tendencies (posterior mean,

posterior median and credible interval with their lower bounds and upper bounds), measure

of dispersions (standard deviation (std) and Markov Chain error (MCerr)), measure of shapes

(Kurtosis and Skewness) and measure of correlations (autocorrelation time (tau) and Geweke).

It can be observed that estimated parameters of the model agree with their initial values and

hence parameters variations of the model are well identi�ed to lie in their credible intervals

(lower values and upper values for which parameters can take). As can be seen, LSQ estimates

agree with MCMC estimates and therefore parameter values of the said model are statistically

quanti�ed and determined.

4.1.5 Sensitivity and Uncertainty Analysis Results

Sensitivity and uncertainty analysis of the estimated parameters on the formulated model pre-

sented in Equation (35) have been carried out with X 2 R4 and � 2 R14: The Gaussian distribu-

tion was assigned to be the the initial distribution for each of parameters. The obtained PRCCs

results are displayed in Fig. 18 and Table 16.
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Figure 18: PRCCs plot for model Equation (35). The parameters 1,2,3...,14 correspond to parameters
that are shown in Table 16, respectively.

Table 16: PRCCs results for model Equation (35)

Parameter PRCCs values for each state variable
Symbol V C T Tc
Fout �0:9847(�) 0.2545 �0:0479 �0:0429
F �0:0269 0.4127 0.1482 �0:0119
k0 �0:1060 �0:7418(�) 0.0302 �0:0761
E 0.0070 0.3054 �0:0743 �0:0973
Tmean �0:1713 �0:0515 �0:2141 0.0032
H� 0.0813 �0:1444 0:6114(�) �0:3979
� 0.0819 �0:3102 0:5000(�) �0:2924
Cp �0:0345 �0:2137 0:6391(�) �0:5186(�)

U 0.0232 �0:0547 �0:1470 0.4348
A �0:0091 0.0298 �0:2086 0:5232(�)

Fc 0.1761 �0:2802 0.0415 �0:3810
Vc 0.0038 �0:0401 �0:1139 0.1187
�c 0.0928 �0:0246 0.1285 �0:2502
Cpc �0:0655 �0:2189 0.0294 �0:3894

The results in Table 16 and Fig. 18 show that the �rst parameter which is the volumetric �ows

out (Fout) is signi�cantly and negatively affecting the volume response as a state variable of

the model Equation (35). On one side, the increase in that parameter values will signi�cantly

decrease the products volume in the tank whereas the slight decrease in Fout values will increase

the volume of products in the tank which may lead to a catastrophic hazard like a destruction

(deformation) of the tank if there are no other control measures. In this regard, deformable
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CSTRs can be proposed as they may deform with the change of the volume. Similarly, the

results show that the second parameter (k0) is negatively correlated with the concentration.

So, the decrease in its values increases the concentration and the other way around. One can

observe that the tank temperature pro�les in the model Equation (35) are speci�cally determined

by the increase of reaction heat energy (H�), density (�) and the speci�c heat capacity (Cp).

The cooling jacket temperature is also negatively and positively affected by Cp and the cross-

sectional area (A) between the reacting tank and the jacket respectively. Consequently, seven

parameters in total may be found to have a great effect on the formulated model response.

4.1.6 Conclusion

The formulated model Equation (35) has been numerically solved by using fourth order Runge-

Kutta method that is implemented in Matlab version 2016b. The identi�ability of physical

parameters of the model was also numerically carried out by using the least squares and DRAM

methods. The least square parameters estimates converged to the literature values and were

treated as prior information for the DRAM method. The generated DRAM samples were graph-

ically and statistically analysed to test the convergence of the MCMC results. The results show

that the parameters of the model were well identi�ed as can be seen in Table 13. The uncer-

tainty and sensitivity analysis of the model parameters variations on model variables using LHS

and PRCCs have been further conducted. It was found that seven parameters among fourteen

estimated parameters of the model have a great impact on model response and therefore control

of those parameters are of great importance.

4.2 Numerical Analysis and Parameters Estimation of Deterministic Model for En-
dothermic CSTR

The numerical analysis of the formulated model that is presented in Equation (36) was done by

using the same methods used in Section 4.1.
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4.2.1 Numerical Solutions

Similarly, the numerical simulations and the parameters identi�cation of the endothermic

CSTR deterministic model which is presented in the model Equation (36) were done by

following the same previous concepts. But simulations require parameters and initial values

of the model Equation (36) as well. Table 17 and Table 18 show variables, parameters and

initial values used to obtain the numerical solutions of the model. Quantitative results and the

graphical representations of the solutions were performed and are found in Fig. 19.

Table 17: Table of variables, parameters and constants

Param symbol (unit) Param name Value Reference
Cin(kmol min�1m�3) Feeding con-

centration
316.8 Muhirwa et al. (2017)

C0(kmol min�1m�3) Initial concen-
tration

316.8 Muhirwa et al. (2017)

C(kmol min�1m�3) Mixture con-
centration

State variable to be simulated

Tin(oK) Feeding tem-
perature

298.35 Muhirwa et al. (2017)

T0(oK) Initial tempera-
ture

298.35 Muhirwa et al. (2017)

T (oK) Mixture tem-
perature

State variable to be simulated

H�(kcal kmol�1) Enthalpy 1004:3� 103 Muhirwa et al. (2017)
TH0(oK) Initial heating

temperature
288.15 Lu et al. (2017)

THin(oK) Feeding heat-
ing tempera-
ture

293 Vojtesek et al. (2008)

TH(oK) Jacket heating
temperature

State variable to be simulated

R(kJ kmol�1 oK�1) Gas law con-
stant

8.314 Muhirwa et al. (2017)

V0(m3) Initial tank vol-
ume

100 Aboelela et al. (2018)

V (m3) Volume of the
tank

State variable to be simulated

k0(min�1) Pre-Arrhenius
frequency

0.9 Muhirwa et al. (2017)

E(kJ kmol�1) Activation en-
ergy

0.5 Muhirwa et al. (2017)

Tmean(oK) Reference tem-
perature

298.15 Muhirwa et al. (2017)
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Table 18: Continued table of variables, parameters and constants

Param symbol (unit) Param name Value Reference
F = Fin(m3 min�1) Feeding veloc-

ity
130� 10�2 Muhirwa et al. (2017)

�(kg m�3) Density 1000 Muhirwa et al. (2017)
Cp(kcal kg�1 oK�1) Speci�c Heat

capacity
4186 Muhirwa et al. (2017)

U(kJ min�1 oK�1 m�2) Heat transfer
coef�cient

100 000 Muhirwa et al. (2017)

A(m2) Cross-sectional
area

0.015 Muhirwa et al. (2017)

FH(m3 min�1) Heating veloc-
ity

46:5� 10�6 to be estimated

VH(m3) Heating reactor
volume

50� 10�6 to be estimated

�H(kg m�3) Density of the
heater

1000 Aboelela et al. (2018)

CpH (kcal kg�1oK�1) Heater heat ca-
pacity

4:168� 103 Muhirwa et al. (2017)

Fout(m3min�1) Outlet velocity 130� 10�6 to be estimated

Note: Param means parameter

Figure 19: Numerical solutions of model Equation (36)

From Fig. 19, it is seen that the concentration of the reactants is decreasing inside the tank from

316.8 and approaching zero. When the reactants are fed continuously into the tank they are con-

sumed and this is an indication of having a complete conversion of reactant’s concentration into
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product’s concentration. The temperature of the system is observed to increase exponentially

from 298:35oK to 360oK due to the heating process alongside the reacting tank. Consequently,

the temperature of the heating tank decreases slightly from 288:15oK to almost zero after 5

minutes. From sub-plot 1 of Fig. 19, it can further be observed that the volume of the reacting

tank increases as the feeding rates become more and greater than the removal rates. This has

a signi�cance in designing the reacting tank which may deform continuously to adapt to the

increase of the production conversion rate from 100m3 to approximately 126m3.

4.2.2 Least Squares Results

As it was previously done for the CSTR with the exothermic reaction, the numerical solutions of

model Equation (36) are corrupted with �ve different noise intensity � = [0:01; 0:05; 0:1; 0:5; 1]

to obtain 5 data points which are considered as the experimental measurements of the CSTR

system with the endothermic reaction. By using the obtained experimental measurements, in

Fig. 20 - Fig. 24, there are estimated solutions (dashed red color) and the exact model solutions

(blue color) as well as the estimated values of parameters of model Equation (36) which are

presented in Table 19 - Table 23.

Figure 20: Fitted CSTR model Equation (36) when � = 0:01

From Fig. 20, the measurements are �tting the model very well and all parameters seem to con-

verge to its true parameter values as can be also observed in Table 19. Therefore, the corruption
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of the CSTR model (36) solutions by using � = 0:01 will have no big impact on the predictive

results from the model since all measurements are almost overlapping with the estimated val-

ues of the model. The Least Squares results show that the estimated values of the volume, the

concentration, the temperature and the heating temperature remain the same as their numerical

solutions due to low noise introduced in the numerical results of the model.

Table 19: Table of estimated model parameters when � = 0:01

Parameter symbol Parameter Physical
Meaning

Initial value Estimated

Fout Outlet Velocity 130� 10�6 129:105� 10�6

F Feeding Velocity 130� 10�2 129:273� 10�2

k0 Pre-Arrhenius Fre-
quency

0.9 0.898036713

E Activation Energy 0.5 0.498149772
Tmean Reference Tempera-

ture
298.15 297.5395333

H� Enthalpy 1004:3� 103 992 722.1594
� Density 1000 998.2500704
Cp Heat Capacity 4186 4161.567828
U Heat Transfer Coef�-

cient
10 000 9892.834025

A Cross-sectional Area 0.015 0.014838739
FH Heating Velocity 46:5� 10�6 46:2� 10�6

VH Heating Reactor Vol-
ume

50� 10�6 49:5� 10�6

�H Density of the Heat-
ing Substance

1000 992.4317537

CpH Heating Heat Capac-
ity

4168 4153.497983

The corrupted numerical solutions with � = 0:05 have been used to identify the model’s param-

eters and the results show that all parameters are very close to its true values with the reference

to the results shown in Table 20. It can be seen that the predictive model’s solutions (dashed red

color) are very close to the model exact solutions (solid blue line) as well. Therefore, this model

displays a good �tting to the data according to the curves of volume, concentration, temperature

and the heating temperature shown in Fig. 21. While the Least Squares results of the volume,

the concentration and the heating temperature of CSTR are the same as their corresponding nu-

merical solutions, the Least Squares results of temperature of the reacting tank are nearly close

to its corresponding numerical solutions.
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Figure 21: Fitted CSTR model Equation (36) when � = 0:05

Table 20: Table of estimated model parameters when � = 0:05

Parameter symbol Parameter Physical
Meaning

Initial value Estimated

Fout Outlet Velocity 130� 10�6 127:429� 10�6

F Feeding Velocity 130� 10�2 122:894� 10�2

k0 Pre-Arrhenius Fre-
quency

0.9 0.888095389

E Activation Energy 0.5 0.50971455
Tmean Reference Tempera-

ture
298.15 295.2869142

H� Enthalpy 1004:3� 103 997 444.3212
� Density 1000 1094.290957
Cp Heat Capacity 4186 3911.158011
U Heat Transfer Coef�-

cient
10 000 9931.53421

A Cross-sectional Area 0.015 0.014838647
FH Heating Velocity 46:5� 10�6 46:4� 10�6

VH Heating Reactor Vol-
ume

50� 10�6 50:4� 10�6

�H Density of the Heat-
ing Substance

1000 977.7974624

CpH Heating Heat Capac-
ity

4168 4174.378311

The random noise of intensity � = 0:1 has been also introduced in the numerical solutions of

the CSTR model Equation (36) to obtain the experimental measurements taken as real data of
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the process. Those real data have been used to estimate the model’s parameters which show

the convergence as it can be seen from the results that are displayed in Table 21. Based on the

curves (solid blue line and dashed red line) in Fig. 22, it can be viewed that the measurements

of volume, concentration, temperature and the heating temperature �t the model numerical

solutions well.

Figure 22: Fitted CSTR model Equation (36) when � = 0:1

81



Table 21: Table of estimated model parameters when � = 0:1

Parameter symbol Parameter Physical
Meaning

Initial value Estimated

Fout Outlet Velocity 130� 10�6 127:077� 10�6

F Feeding Velocity 130� 10�2 119:092� 10�2

k0 Pre-Arrhenius Fre-
quency

0.9 0.878266408

E Activation Energy 0.5 0.562648664
Tmean Reference Tempera-

ture
298.15 289.2325135

H� Enthalpy 1004:3� 103 947 566.2601
� Density 1000 1085.801577
Cp Heat Capacity 4186 3689.762929
U Heat Transfer Coef�-

cient
10 000 9904.85817

A Cross-sectional Area 0.015 0.014785247
FH Heating Velocity 46:5� 10�6 46:0� 10�6

VH Heating Reactor Vol-
ume

50� 10�6 49:9� 10�6

�H Density of the Heat-
ing Substance

1000 995.4546099

CpH Heating Heat Capac-
ity

4168 4124.186059

The noise of the standard deviation 0.5 is introduced in the numerical solutions of model Equa-

tion (36) and the corresponding model �tting and estimated values of model parameters are

found in Fig. 23 and Table 22.
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Figure 23: Fitted CSTR model Equation (36) when � = 0:5

Table 22: Table of estimated model parameters when � = 0:5

Parameter symbol Parameter Physical
Meaning

Initial value Estimated

Fout Outlet Velocity 130� 10�6 153:94� 10�6

F Feeding Velocity 130� 10�2 55:021� 10�2

k0 Pre-Arrhenius Fre-
quency

0.9 0.795111739

E Activation Energy 0.5 0.300459211
Tmean Reference Tempera-

ture
298.15 409.8247248

H� Enthalpy 1004:3� 103 808 294.8766
� Density 1000 1167.962108
Cp Heat Capacity 4186 3866.591573
U Heat Transfer Coef�-

cient
10 000 13 340.82233

A Cross-sectional Area 0.015 0.014788745
FH Heating Velocity 46:5� 10�6 47:3� 10�6

VH Heating Reactor Vol-
ume

50� 10�6 41:7� 10�6

�H Density of the Heat-
ing Substance

1000 1329.654448

CpH Heating Heat Capac-
ity

4168 3821.050206

The noise of magnitude � = 0:5 greatly affects the endothermic CSTR deterministic model (36)

because most of the estimated parameters are far away from its initial values in according to the
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results presented in Table 22. The predictive curves for the volume, the concentration and the

heating temperature seem to be in good agreement with the measurements, however the other

remaining state variable (temperature) shows poor �tting to the data as can be visualised in Fig.

23.

Figure 24 and Table 23 represent the Least Squares results obtained when the noise intensity is

� = 1.

Figure 24: Fitted CSTR model Equation (35) when � = 1
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Table 23: Table of estimated model parameters when � = 1

Parameter symbol Parameter Physical
Meaning

Initial value Estimated

Fout Outlet Velocity 130� 10�6 197:063� 10�6

F Feeding Velocity 130� 10�2 154:711� 10�2

k0 Pre-Arrhenius Fre-
quency

0.9 0.918954071

E Activation Energy 0.5 0.435849618
Tmean Reference Tempera-

ture
298.15 292.9495998

H� Enthalpy 1004:3� 103 393 172.6156
� Density 1000 1156.565248
Cp Heat Capacity 4186 6563.033057
U Heat Transfer Coef�-

cient
10 000 9727.782374

A Cross-sectional Area 0.015 0.019190691
FH Heating Velocity 46:5� 10�6 51:3� 10�6

VH Heating Reactor Vol-
ume

50� 10�6 1:57� 10�6

�H Density of the Heat-
ing Substance

1000 965.7932723

CpH Heating Heat Capac-
ity

4168 3876.875097

Based on the results represented in Fig. 24, it can be seen that the model predictive results are

not in good agreement with the experimental measurements of the model. Hence the deviation

of the graphical representations is being supported by the parameter estimate results that are

shown in Table 23. Most of the identi�ed parameters diverge from its initial parameter values

and this shows a signi�cant effect of high intensity noise (� = 1) on the formulated CSTR

model’s temperature and the heating temperature. That is the Least Squares results for some

CSTR physical values like the temperature and the heating temperature signi�cantly differ from

their corresponding numerical results as shown in Fig. 24.

4.2.3 Markov Chain Monte Carlo Results

For model Equation (36), initial number of samples generated was 500 000 and Gaussian distri-

bution was initialized with mean 0 and covariance matrix �0 = 0:00001�Ip�ppp ; where p represents

the number of parameters to be identi�ed, and Ip�p is the p � p identity square matrix. The
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least squares results obtained when � = 0:05 were treated as prior information to produce the

MCMC results.

(i) Trace plots

The generated time series for parameters is plotted to diagnose whether the posterior parameter

distributions are stationary. If the chain gets stuck somewhere during sampling period, then

the chain does not move straightforward from one side to another and this makes the MCMC

algorithm to produce a poor mixing chain. The poor mixing indicates that the parameters are

not well identi�able. Therefore, further task of changing the ingredients of the algorithm should

be done to correctly, ef�ciently and effectively identify the model parameters.

Figure 25: MCMC chain plots (time series plots) of samples CSTR model Equation (36)

Trace plots that are shown in Fig. 25 indicate that there are no high trends in sampled parameters

since the chain is stationary and moves from one side to another. It is explored that DRAM does

not stack in any place during sampling, which represents good mixing of the chain.

(ii) Scatter plots (pairs)

The scatter plots check the correlation index between pairs of samples. High correlation index

among many pairs of samples can lead to poor identi�ability of the model parameters. As

a consequence, the model cannot be reliably applicable because small variation in a set of
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correlated parameters can make the model corrupting. Low correlation index among pairs is

preferably to be observed for a good mixing and for a well reliable and realistic model.

Figure 26: MCMC pairs plots of samples for CSTR model Equation (36)

As there are fourteen parameters to be identi�ed from the data points, then there are as many

as possible combinations of each pairs chosen from fourteen parameters which are equivalent

to ninety one scatter plots. However, the graphical representation of the scatter plots is for the

�rst ten parameter samples which are equivalent to forty �ve scatter plots. Figure 26 shows how

pairs among those forty �ve scatter plots correlate and it can be seen that none of the parameters

are strongly correlated with each another. If one observes strong correlation among sampled

parameters, then it is the indication that the algorithm mixes badly and so a high number of

simulations is required to at least increase the variance among samples.

(iii) Autocorrelation plots

The autocorrelation plots show how independent is the sampling process. If the coef�cients

of the autocorrelation functions (x-axis) for some of the posteriors do not decay toward zero

as the number of lags (y-axis) increases, then it is the sign of having parameters dependence

in sampling which causes the MCMC method not to converge to the target distribution. Thus,

a decay of autocorrelation functions coef�cients provides the accuracy and the certainty of

obtaining a converging posterior distribution of parameters.
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Figure 27: MCMC plots of autocorrelation functions for parameters samples of the model Equation
(36)

From Fig. 27, it can be seen that all coef�cients of autocorrelation functions (x-axis) are expo-

nentially decaying as the number of lags (y-axis) increase. Therefore, the consecutive parame-

ters are independently sampled during the run-time of the DRAM algorithm, and this determines

the convergence of the generated chains.

(iv) Histograms for posterior samples of endothermic CSTR deterministic model

The histograms for sampled posterior parameters for a converging Markov chain must fairly

follow the normal distribution curve. It is therefore a good practice to plot the histograms for

all sampled parameters to make sure that all of them have bell shapes.
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Figure 28: MCMC histograms plots of parameters posterior samples of the model Equation (36)

So, from Fig. 28, it is spotted that almost all sampled parameters follow the normal distributions,

except for the parameters Fout andE which are slightly skewed in the right hand side. As results,

DRAM method identi�ed well other twelve parameters of the model Equation (36).

(v) Marginal density for posterior distributions

Figure 29 illustrates the density distributions of the estimated parameters of the model Equation

(36). For well identi�ed parameters, shapes of their kernel density distributions must follow

Gaussian distribution.

Figure 29: MCMC plots of Kenel density distributions parameters of the model Equation (36)
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Figure 29 shows that the parameters are identi�ed because all parameters seem to follow the

Gaussian distribution except for parameters Fout and E. This Figure also displays the posterior

means of all sampled parameters and are located in the symmetrical axes of their corresponding

density distributions.

(vi) Empirical probability plot of posteriors

Figure 30: Probability plots for 500 000 posterior samples of parameters of the model Equation (36).

It is shown in Fig. 30 that quantiles of posterior chains of parameters Fout and E are not exactly

following the theoretical normality of quantiles.

The overall MCMC quantitative results of model Equation (36) can be found in Table 24 - Table

26. The Table show that all posterior means are within their credible intervals. The MCMC

results show convergence as the MCerror is minimized. Some curves for parameters posterior

means have shown skewness and deviate from normal curves for example Fout and E. The

kurtosis and the skewness values for probability distributions of posterior parameters that follow

Gaussian distribution are conventionally expected to be around 3 and 0 respectively. It is clear

that almost all parameters kurtosis and skewness values are approximately 3 and 0 except for

Fout which is 4.3 and 1.15 respectively. The skewness for the parameter E is not approximately

0 but 0.849. It indicates that most of all model parameters follow Gaussian distribution. The

geweke values for posterior distributions also check the convergence of the MCMC chain of
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Figure 31: PRCCs plot for model Equation (36)

From Fig. 31, subplot 1-subplot 4 displays the PRCCs results for the volume, the concentration,

the temperature and the heating temperature, respectively. This �gure shows that the �rst pa-

rameter (Fout) is strongly and negatively correlated with the volume means that the increase in

the values of Fout decreases the values of the volume in the reacting tank. Likewise, the second

parameter (F ) is positively correlated with the concentration whilst the third one is signi�cantly

and negatively correlated with the concentration, and consequently, the increase in the values of

F will increase the values of the concentration in the model and the increase of k0 will decrease

the concentration values of the model as can be seen from subplot 2. In subplot 3, it can be ex-

plored that the increase of sixth parameter (H�) values will increase the temperature of the tank

whereas the increase of the seventh (�) and the eighth (Cp) parameters values will automatically

decrease the temperature values in the formulated model. Sub-plot 4 of Fig. 31 shows that only

the sixth parameter is negatively correlated with the heating temperature which explains that

the increase in the enthalpy values will directly inhibit the increase of the heating temperature

values. As a result, Fout; F; k0; H�; � and Cp parameters are identi�ed to be very sensitive to

the model Equation (35) and hence much attention has to be quantitatively and qualitatively

accorded to those in�uential model parameters.
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Table 27: PRCCs results for model Equation (36)

Parameter PRCCs values for each state variable
Symbol V C T TH
Fout �0:9890(�) 0.4067 �0:0263 �0:0126
F 0:1793 0:7850(�) 0.1599 �0:2350
k0 0:0645 �0:9678(�) 0.2452 �0:1453
E 0.1209 �0:1126 0:1999 �0:1934
Tmean 0:0730 0:0739 0:0048 �0:0053
H� 0.1246 �0:0532 0:5897(�) �0:5029(�)

� 0.1777 �0:0739 �0:5858(�) 0:3995
Cp 0:1076 �0:1335 �0:6017(�) 0:3773
U �0:0473 0:0001 0:0060 �0:2588
A �0:0664 0.1083 �0:0800 �0:2929
FH 0.0918 0:0950 �0:1923 0:3310
VH 0.1325 �0:0212 �0:0447 �0:1234
�H 0.0846 �0:1467 0.0563 0:3318
CpH 0:2289 �0:0405 �0:1175 0:2282

4.2.5 Conclusion

In this Section 4.2 of the dissertation, the variable-volume deterministic model for the endother-

mic continuously stirred tank reactor has been numerically solved and analysed by using the

Least Squares and the Markov Chain Monte Carlo (MCMC) methods. The MCMC algorithm

used in this Section is the delayed-rejection adaptive metropolis (DRAM). The results from

DRAM have been graphically and statistically analysed to not only study the convergence of

the results and the robustness of the model but to also examine the applicability and the relia-

bility of the model by identifying unknown model physical parameters. The global sensitivity

analysis is performed to quantify the effect of uncertainty in the model from the uncertainty of

estimated parameters by using Latin Hypercube Sampling method. The partial rank correlation

coef�cients results and their signi�cances to each variable of the model Equation (36) have been

studied and analysed. Six parameters among fourteen identi�ed parameters were shown to be

correlated with the model variables and are very sensitive to the model responses. The numeri-

cal results revealed that the model is well identi�ed and can be very bene�cial to qualitatively,

quantitatively and experimentally describe the dynamics of the variable-volume CSTR systems

whenever the shown in�uential parameters are treated and controlled carefully.
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4.3 Numerical Analysis of Exothermic CSTR Stochastic Models

Stochastic differential equations often do not have the exact solutions. The approximated so-

lutions are obtained through numerical simulations. Therefore, the four scenarios of stochastic

models presented in chapter 3 of this dissertation, that means Equations (83), (84), (85) and

(95) were numerically solved and analysed by using Euler-Maruyama method with their corre-

sponding deterministic models taken as benchmarks.

4.3.1 Numerical Results for Scenario A

In the simulation, the Brownian variables were chosen to be equally and normally distributed

with mean 0 and standard deviation t, that means dBV = dBC = dBT = dBTc v N(0; dt):

The numerical results of stochastic model Equation (83) that were obtained for different values

of volatility constants 0.1, 0.3, 0.5 and 1 are graphically displayed from Fig. 32 to Fig. 35.

Figure 32: Stochastic solutions of the model Equation (83) obtained by using volatility constants
� = �V = �C = �T = �Tc = 0:1 and the corresponding deterministic solutions

Figure 32 illustrates that the low random noise of uncertainty � = 0:1 that may be present in

the CSTR’s volume, concentration, temperature and cooling temperature does not much perturb

their corresponding normal values as CSTR’s physical quantities.
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Figure 33: Stochastic solutions of the model Equation (83) obtained by using volatility constants
� = �V = �C = �T = �Tc = 0:3 versus numerical solutions of its corresponding
deterministic model Equation (35).

The results in Fig. 33 show that the volume is more affected by the uncertainty as compared

with the concentration, temperature and the cooling temperature. It can be seen that the ran-

dom �uctuation � = 0:3 in the deterministic CSTR model Equation (35) makes the volume

values to slightly differ from its corresponding deterministic values as compared with the rest

of the CSTR’s physical quantities such as the concentration, the temperature and the cooling

temperature.
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Figure 34: Stochastic solutions of the model Equation (83) obtained by using volatility constants
� = �V = �C = �T = �Tc = 0:5 and the corresponding numerical solutions of its
deterministic version

The results From Fig. 34 show that the volatility constants equivalent to 0:5 affect the numerical

results of the CSTR’s volume as compared with the effects in concentration, temperature and

the cooling temperature results.

Figure 35: Stochastic solutions of the model Equation (83) obtained by using volatility constants
� = �V = �C = �T = �Tc = 1 against numerical solutions of its corresponding
deterministic deterministic model that is shown in system of Equations (35)
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It can be observed that uncertainty in the tree CSTR’s physical quantities, namely, the concen-

tration values, temperature values and the cooling temperature values are not much affected as

compared with the volume. For this case, it is expected that the CSTR’S volume values become

very sensitive and be in�uenced by the high magnitude of the uncertainty.

In Fig. 32 - Fig. 35, it can be spotted that the higher the volatility constants values the much

�uctuation of the stochastic model and hence this in�uences much variation between the deter-

ministic and the stochastic CSTR models, especially for the CSTR’s volume results. It is a good

observation for scenario A, that small �uctuation values which may be present in the formulated

CSTR stochastic model make it to behave like its corresponding deterministic model.
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4.3.2 Numerical Results for Scenario B

The stochastic model presented in Equation (84) was also numerically simulated by using dif-

ferent volatility values as per scenario A. The numerical results are graphically plotted in Fig.

36 - Fig. 39.

Figure 36: This �gure demonstrates and compares stochastic solutions of model Equation(84) obtained
by using volatility constants � = �V = �C = �T = �Tc = 0:1 and the analogous
deterministic solutions

It can be seen from Fig. 36 that stochastic volume cannot fully capture all the uncertainties

in the corresponding deterministic values of the volume whilst the stochastic concentration,

temperature and the cooling temperature can capture the uncertainties in their corresponding

deterministic curves.
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Figure 37: The illustration of stochastic solutions of the model Equation(84) obtained when volatility
constants � = �V = �C = �T = �Tc = 0:3 against its deterministic numerical solutions

It is observed from Fig. 37 that all four stochastic CSTR’s physical quantities fail to capture their

uncertainties around the corresponding deterministic values. It means that the random noise of

0:3 will perturb the deterministic results of the CSTR’S volume, concentration, temperature and

the cooling temperature.

Figure 38: Numerical solutions of the stochastic model Equation(84) obtained when volatility
constants are selected to be � = �V = �C = �T = �Tc = 0:5 against the respective
deterministic numerical solutions
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The same situation as it is in Fig. 37 is observed for Fig. 38, whereby the CSTR’s stochastic

volume, concentration, temperature and the cooling temperature are not fully capturing the

uncertainties in their corresponding deterministic values.

Figure 39: Stochastic solutions of the model Equation(84) which are obtained by using volatility
constants � = �V = �C = �T = �Tc = 1 and numerical solutions of the corresponding
deterministic model that is presented in Equation (35)

Figures 36, 37, 38, 39 are the numerical solutions of the derived stochastic model Equation (84)

that is presented in scenario B and the corresponding numerical solutions of the deterministic

model Equation (35). These �gures show that small volatility constants values can not easily

make the stochastic model to behave like its respective deterministic model. However, as com-

pared with the numerical results obtained in scenario A with the same values of the volatility

constants, stochastic model that is constructed in scenario B seems to be very sensitive to small

values of the �uctuation constants. This could be an indication of having a high controllability

of the physical quantities of the CSTR system model in the avoidance of some small stochastic

excitement that may enter into the system if the model presented in scenario B is considered as

piloting model during the application. Alternatively, high variation of the solutions may depend

on the used scheme. It can be observed that Euler-Maruyama is not an effective method to

tackle multiplicative SDEs.
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4.3.3 Numerical Results for Scenario C

For this scenario, the parameter k0 is very important and can be in�uenced by �uctuations such

reactants impurities, environmental conditions and high temperature of the reaction. Therefore,

this parameter has been perturbed and becomes k0 + � dB
dt : Figure 40 - Figure 43 represent the

numerical results obtained for the stochastic model Equation (85). The results were produced

by considering �uctuation constants � = 0:1; 0:3; 0:5 and 1 as it has been done for previous

scenarios.

Figure 40: This �gure points out stochastic numerical solutions of the model Equation(85) gotten by
using volatility constants � = 0:1 versus numerical solutions of the corresponding
deterministic model formulated in Equation (35)

Figure 40 illustrates that the perturbation of the pre-Arrhennius reaction rate together with low

�uctuations do not alter the simulated physical values of the CSTR system such as the concen-

tration and the temperature.
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Figure 41: These are stochastic numerical solutions of the model Equation(85) produced by using
volatility constants � = 0:3 against numerical solutions of the corresponding deterministic
concentration and the temperature of the model Equation (35)

From Fig. 41, it can be spotted that the perturbation of the pre-Arrhennius reaction rate together

with volatility constant � = 0:3 do not much alter the simulated CSTR’s concentration and

temperature values.

Figure 42: Stochastic numerical solutions of the model Equation(85) produced by using volatility
constants � = 0:5 against its corresponding numerical solutions of the deterministic model
presented in Equation (35)
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The stochastic results of the physical concentration and the temperature of the CSTR system in

Fig. 42 are not in a good agreement with their corresponding deterministic solutions.

Figure 43: These are numerical results of the stochastic model Equation(85) obtained by using
volatility constants � = 1 against its numerical solutions of the corresponding deterministic
model Equation (35)

From Fig. 40 - Fig. 43, it is observed that sample trajectories of the stochastic model Equation

(85) follow the results of deterministic model when �uctuation constants becomes small. How-

ever, the results displayed have shown stochastic effects on two differential Equations of the

system, namely dC
dt and dT

dt : This is because parameter k0 appears in only those two mentioned

differential Equations and this conducts to partial perturbation of the model.

4.3.4 Numerical Results for Scenario D

Numerical solutions of the stochastic model that is shown in system of Equations (89) were

obtained in Fig. 44. This Figure shows that the uncertainty affects much more the CSTR’s

volume than the rest of the physical quantities of the system.
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Figure 44: The plot that is illustrating stochastic numerical results of the system of Equations (89)
against the corresponding deterministic numerical solutions of the model Equation (35)

To obtain the results in Fig. 44, the parameters, Fin = 1:3;F = 1:3;Fout = 1:3 � 10�4; k0 =

0:9;E = 0:5;Tmean = 29:815;H� = �1004:3 � 10�3; � = 1;Cp = 4:186;U = 10;A =

0:015;Fc = 46:56 � 10�2;Vc = 50 � 10�2; �c = 1;Cpc = 4:186;Tcin = 10;R = 8:341;Cin =

31:68;Tin = 20:0; step size for time h = 2=10000; step size for Brownian � = 2=80000 have

been �xed and the initial solutions of the model were �xed to be X0 = [10; 31:68; 5; 20]:

4.4 Numerical Analysis of Endothermic CSTR Stochastic Models

In the same way, numerical analyses of the endothermic stochastic models which are presented

in system of Equations (90) for scenario A, (91) for scenario B, (92) for scenario C, and (96)

for scenario D are performed. The obtained stochastic numerical results and the corresponding

deterministic numerical solutions from numerical simulations are graphically displayed in Fig.

45 - Fig. 48 for scenario A, Fig. 49 - Fig. 52 for scenario B, Fig. 53 - Fig. 56 for scenario C

and Fig. 57 for scenario D.
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4.4.1 Numerical Results for Scenario A

Figure 45: Stochastic numerical solutions of the model Equation (90) acquired by using �uctuation
constants � = �V = �C = �T = �TH = 0:1 and numerical results of the deterministic model
Equation (36)

In Fig. 45, the endothermic CSTR’s stochastic results of the volume, the concentration, the

temperature and the heating temperature are in a good agreement with their corresponding de-

terministic CSTR’s physical quantities.

Figure 46: Stochastic numerical solutions of the model Equation (90) acquired by using �uctuation
constants � = �V = �C = �T = �TH = 0:3 and numerical results of the deterministic model
Equation (36)
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According to the results obtained in Fig. 46, the perturbation of the endothermic CSTR’s state

variables with the �uctuation constants � = 0:3 does not signi�cantly affect the CSTR’s volume,

concentration, temperature and the heating temperature.

Figure 47: Stochastic numerical solutions of the model Equation (90) acquired by using �uctuation
constants � = �V = �C = �T = �TH = 0:5 and numerical results of the deterministic model
Equation (36)

In Fig. 47, it is observed that the stochastic solutions of the volume, concentration, temperature

and the heating temperature capture the uncertainties around the corresponding deterministic

numerical results.
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Figure 48: Stochastic numerical solutions of the model Equation (90) acquired by using �uctuation
constants � = �V = �C = �T = �TH = 1 and numerical results of the deterministic model
Equation (36)

From Fig. 45 - Fig. 48, it can be observed that the stochastic numerical results of the CSTR’s

volume, concentration, temperature and the heating temperature agree with its corresponding

deterministic results provided that the volatility constants are small. This makes both determin-

istic and non-deterministic results of the CSTR’s state variables to coincide.

4.4.2 Numerical Results for Scenario B

The formulated stochastic model Equation (91) is numerical solved and analysed by using

Euler-Maruyama method and the obtained numerical solutions are shown in Fig. 49 - Fig.

52.
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Figure 49: Stochastic numerical solutions of the model Equation (91) produced by using �uctuation
constants � = �V = �C = �T = �TH = 0:1 and numerical results of the deterministic model
Equation (36)

The numerical results of multiplicative stochastic model in Fig. 49 show that only the concen-

tration agrees with its corresponding deterministic solution. The stochastic results for the other

three CSTR state variables (volume, temperature and the heating temperature) do not agree with

their deterministic values respectively.

Figure 50: Stochastic numerical solutions of the model Equation (91) produced by using �uctuation
constants � = �V = �C = �T = �TH = 0:3 and numerical results of the deterministic model
Equation (36)
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In Fig. 50, the volatility constants of 0:3 in the multiplicative SDE affect the volume, tempera-

ture and the heating temperature of the deterministic CSTR with the endothermic reaction.

Figure 51: Stochastic numerical solutions of the model Equation (91) produced by using �uctuation
constants � = �V = �C = �T = �TH = 0:5 and numerical results of the deterministic model
Equation (36)

Depending on the results obtained in Fig. 51, it can be seen that the volatility constants � = 0:5

perturb all the endothermic CSTR state variables, namely, the volume, the concentration, the

temperature and the heating temperature of the system.
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Figure 52: Stochastic numerical solutions of the model Equation (91) produced by using �uctuation
constants � = �V = �C = �T = �TH = 1 and numerical results of the deterministic model
Equation (36)

Similarly, much variations of solutions are seen in Fig. 49 - 52 as the volatility constants

becomes bigger. This is the same situation as for Scenario B in Section 4.3. Thus, Euler-

Maruyama method is not an effective method to numerically solve the multiplicative SDEs.

4.4.3 Numerical Results for Scenario C

Figures 53 - 56 encapsulate the numerical results of both stochastic model that is shown in

Equation (92) and its corresponding deterministic numerical solutions of model Equation (36).
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Figure 53: Stochastic numerical solutions of the model Equation (92) obtained when �uctuation
constant � = 0:1 in comparison with the numerical solutions of the corresponding
deterministic model presented in (36)

The numerical results that are shown in Fig. 53 reveal that the CSTR’s concentration and the

heating temperature are not signi�cantly affected by the perturbation of the pre-Arrhennius

reaction rate k0 with the volatility constant � = 0:1:

Figure 54: Stochastic numerical solutions of the model Equation (92) obtained when �uctuation
constant � = 0:3 in comparison with the numerical solutions of the corresponding
deterministic model presented in (36)
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The perturbation of the pre-Arrhennius reaction rate with the �uctuation constant � = 0:3 leads

to the same results of volume, concentration, temperature and the heating temperature for both

deterministic and stochastic model Equations (36) and (92) respectively.

Figure 55: Stochastic numerical solutions of the model Equation (92) obtained when �uctuation
constant � = 0:5 in comparison with the numerical solutions of the corresponding
deterministic model presented in (36)

Based on the results obtained in Fig. 55, it can be noticed that the perturbation of the pre-

Arrhennius reaction rate in the model Equation (36) with the volatility constant � = 0:5 have

effects on the two CSTR’s state variables such as the concentration and the temperature.
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Figure 56: Stochastic numerical solutions of the model Equation (92) obtained when �uctuation
constant � = 1 in comparison with the numerical solutions of the corresponding
deterministic model presented in (36)

The perturbation of the pre-Arrhennius reaction rate by the �uctuation constant value 1 in the

CSTR’s model Equation (36) leads to high variation between stochastic and deterministic con-

centration and temperature of the CSTR system.

From Fig. 53 to Fig. 56, the results show that the perturbation of the pre-Arrhennius tempera-

ture dependent parameter k0 still produce good results given that small values of the volatility

constants are considered in the CSTR deterministic physical values of the concentration and the

temperature.

4.4.4 Numerical Results for Scenario D

The Numerical results for this scenario is given in Fig. (57).
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Figure 57: The plot is showing Euler-Maruyama stochastic solutions of the model Equation (96) and
deterministic solutions of model Equation (36)

For this case, parameters used in the simulations are Fin = 1:3;F = 1:3;Fout = 1:3�10�4; k0 =

0:9;E = 0:5;Tmean = 29:815;H� = 1004:3 � 10�3; � = 1;Cp = 4:186;U = 10;A =

0:015;FH = 46:56�10�2;VH = 50�10�2; �H = 1;CpH = 4:186;THin = 10;R = 8:341;Cin =

31:68;Tin = 20:0; step size for time h = 5=10000; step size for Brownian � = 5=80000 and the

initial solutions of the model are �xed as X0 = [10; 31:68; 5; 20]:

As there is a sum of more than one diffusion parts with square root of volatility constants in the

CSTR’s model, this signi�cantly make the CSTR stochastic physical quantities to differ from

their corresponding CSTR’s deterministic physical quantities for high values of the �uctuation

constants.

4.5 Illustrative Example of Reaction Taking Place in CSTR as an Experimental Appli-
cation

From chemical reaction point of view, the process of decomposition of a substance with water

is called hydrolysis. Then, consider a �ctitious but a real experiment of hydrolysis of acetic

anhydride that forms the acetic acid (vinegar) in a CSTR of volume 1000m3: The introductory

concentration feed is 2:6mol=m3 for the acetic anhydride and 50mol=m3 for water. The reaction

rate k is approximately estimated to 0:0095m3=mol:min and the feed �ow is 15m3=min: Since
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the reaction is exothermic, the CSTR is covered by the outer cooling jacket of volume Vc =

2000m3 with the heat transfer coef�cient U = 103: The cross-sectional area between CSTR

and the cooling jacket is designed to be S = 0:2m2 and the cooling volumetric �ow Fc is

5m3=min while the coolant density is �c = 997. Speci�c heat capacities of the acetic acid

and the coolant are 2043 and 4200 respectively. The heat produced from the reaction during

the mixing is �55:1kJ=mol at 60oC with the coolant temperature at 20oC and the activation

energy which is equivalent to �52:88kJ=mol. If the reaction balance equation is chemically

given by:

(CH3CO)2O +H2O � 2CH3COOH; (112)

and the reaction is considered to be �rst order in acetic anhydride and �rst order in water, then,

(i) Formulate a mathematical model for the reaction

(ii) Compute the fractional conversion of the acetic anhydride into the acetic acid

(iii) Graphically display the change of concentrations and temperature dynamics for the above

experiment.

Solution

Let A represents the acetic anhydride, B be the water and C be the product which is acetic acid

(vinegar). Since we are interested in the forward reaction of the balance Equation (112), then

the reaction formula is given by:

A+B ! 2C; (113)

with the following given data and unknowns with a question mark

CA0 = 2:6 , CA =?, CB0 = 50 , CB =?, k = 0:0095 , �A =?, V = 1000, �B =?, F0 = 15

, T =?, H� = �55:1 , Tc =?, E = �52:886, Tc0 = 20oC = 293:15oK, Fc = 5, U = 103,

S = 0:2m2, Cpc = 4200, Cp = 2043, � = 1050,�c = 997, T0 = 60oC = 333:15oK, Vc = 2000:

(i) Mathematical model that describes the dynamics of the above reaction in CSTR can be
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formulated as follow:

8
>>>>>>>><

>>>>>>>>:

dCA
dt = F0

V (CA0 � CA)� kCACB;

dCB
dt = F0

V (CB0 � CA)� kCACB;

dT
dt = F0

V (T0 � T ) + �H�kCACB
�Cp

� US
�CpV

(T � Tc);

dTc
dt = Fc

Vc
(Tc0 � Tc) + US

�cCpcVc
(T � Tc):

(114)

(ii) The acetic anhydride reactant conversion occurs at the steady-state, and then dCA
dt = dCB

dt =

0: Therefore,

8
><

>:

F0CA0 � F0CA � kCACBV = 0 � 39� 15CA � 9:5CACB = 0

F0CB0 � F0CB � kCACBV = 0 � 750� 15CB � 9:5CACB = 0
(115)

The system of Equations (115) is solved simultaneously. By solving for CB from the �rst

Equation of the system (115), we get

CB =
39� 15CA

9:5CA
: (116)

Substituting the Equation (116) into the second Equation of the system (115), results to

750� 15
(39� 15CA)

9:5CA
� 9:5

(39� 15CA)
9:5CA

= 0: (117)

So, the simpli�ed form of the Equation (117) leads to a quadratic polynomial in CA variable

presented in Equation (118) as follow,

142:50C2
A + 6979:5CA � 585 = 0: (118)

After solving the quadratic polynomial (118), the following results are obtained:

CA1 = 0:083674mol=m3;

CA2 = �49:063mol=m3 ( to be rejected because in reality the concentration can not be negative):

Therefore, CA = 0:083674mol=m3 and CB = 47:484mol=m3:

117



As a result, the acetic anhydride fractional conversion into acetic acid in the presence of water

of concentration 47:484mol=m3 is given by

�A =
CA0 � CA
CA0

=
2:6� 0:083675

2:6
= 0:96782:

It is clear that 96:782% of acetic anhydride is converted into product (vinegar). The remaining

acetic anhydride portion equivalent to 3:218% is not converted into vinegar. This can be inter-

preted as impurity or more water is needed for a total conversion.

(iii) The simulation results that supplement the above calculations are graphically displayed in

Fig. 58.

Figure 58: Simulation of the real example of formation of acetic acid (vinegar) from acetic anhydride
and water.

From Fig. 58, it can be seen that the reactant concentration, which is the concentration of acetic

anhydride, approaches 0:083674mol=m3 as the concentration of water becomes 47:484mol=m3

after 10min of the starting of the reaction (see sub-plots 1 and 2 of Fig. 58). The reaction

temperature starts increasing and then returns to its lower temperature point due to the cooling

effect. As a result, the vinegar production experiment from acetic anhydride and water was

numerically simulated and the numerical solutions show that the optimal fractional conversion

of 96:782% of vinegar from acetic anhydride is reached.
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CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

The aim of the current study was to develop deterministic and non-deterministic mathematical

models for continuously stirred tank reactor (CSTR) and use the statistical and Bayesian meth-

ods to analyse and estimate the unknown physical parameters. The perturbed exothermic and

endothermic CSTRs’ mathematical models, for deterministic and stochastic, were formulated

by using the Reynold transport theorem. This was an achievement of the �rst speci�c objective

of this research project. The analyses of the formulated models, numerical simulations, param-

eters estimation and the determination of the effectiveness of different numerical methods in

solving these models were achieved by using several statistical and Bayesian approaches. The

methods used for parameters estimation were the classical least squares and Delayed-Rejection

Adaptive Metropolis method which is the version of the Markov chain Monte Carlo (MCMC)

methods. The partial rank correlation coef�cients (PRCCs) with the Latin-Hypercube sampling

technique was used for the sensitivity analysis and uncertainty quanti�cation of the estimated

parameters on models responses. The Euler-Maruyama method has been used as the numerical

scheme for solving all formulated CSTR stochastic models which are presented in Chapter 3

of this dissertation. The results from the least squares showed that the models’ estimates can

be well �tting the theoretical models, provided that the noise intensity is minimized and ranges

between 0 and 0:5: Moreover, the deterministic models’ parameters identi�ability, their statis-

tical inferences and their credible intervals computed at the probability of 95% were obtained

through MCMC results. The assessment of the effect of perturbation on the CSTRs’ models

was achieved by applying small Gaussian noises in the simulations of the deterministic mod-

els and by examining the effect of �uctuations in the stochastic models. It was observed that

small perturbations in the CSTR deterministic models and the increase of �uctuations in the

CSTR stochastic models can make the models’ solutions to oscillate and signi�cantly deviate

from the corresponding theoretical deterministic models’ solutions. As the state of the art, there

must be always controllability and �ltering of the noise of high magnitude that may enter the

CSTR system from different sources. Furthermore, through simulations, it was observed that

the deformation of the tanks is mainly based on the increase of the volume and it is possible
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whenever the �ow-out rate of input reactants exceeds the removal rate of the products. To ad-

dress this problem there must be either a certain speci�c design of the tanks such that residence

time of the products inside the tanks is taken into account or always make the removal rate to

be at least faster than the supply rate or make the two to be at a constant rate. To simulate

an actual real-life chemical problem as an application of CSTRs, the analytical and numeri-

cal experiments on the real life problem of production of vinegar (acetic acid) from water and

the acetic anhydride was used. From the numerical simulations, it was observed that a portion

of acetic anhydride remained unconverted and so, the full conversion into vinegar needs more

water. The formulated CSTRs’ models have been validated through simulations, model �tting,

uncertainty quanti�cation and sensitivity analyses whereby seven parameters were found to be

highly correlated with the model Equation (35) while six parameters of the model Equation (36)

highly correlated with it. All �ndings and contributions made in this dissertation can be used

as a source of prior information for design engineers and scientists to correctly and effectively

design suitable CSTRs without preliminary mathematical quanti�cations of variables and pa-

rameters which may be very costive. Therefore, the formulated models can be very useful in

the description and modelling of the dynamics of various mechanical, chemical and biological

systems.

5.2 Recommendations

Mathematical modelling approach is appreciated to solve and simulate challenging real life

problems in science and engineering. Designing and development of manufacturing prototypes

and physical tests are always very expensive. Mathematical and numerical models make it

easy to analyse complex industrial problems. Within prior investment, industrialists prefer to

use numerical modelling and simulations in design and development of their work, to analyse,

optimise and verify the performance of designs. Thus, numerical models provide reliable and

accurate simulations to mimic the real physical problem. Therefore, from this research, the

following four recommendations are made.

(i) The formulated mathematical models and their estimated quantitative values provided in

this dissertation can be industrially tested to get an insight of how they work. For instance,

whenever possible in future, one can get real data from industry and try to �t those data

to the formulated models for the prediction.
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(ii) The formulated models can be adopted or extended whenever possible. For example, the

formulated CSTR models can be extended to model a group of several connected CSTRs

to switch from simple production to chain production.

(iii) Multiplicative stochastic differential equation (MSDE), refers to scenarios B, needs an

effective stochastic scheme. It will be interesting to have a numerical scheme developed

for simulating MSDE as Euler-Maruyama was not effective for providing good results.

(iv) Due to time constraint and the wideness of the project, researchers have been unable to

estimate the parameters in stochastic models. Estimating parameters in stochastic models

can be a whole separate topic in mathematics. This task is intended to be conducted in

the future work.
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APPENDICES

Research Output

(i) Publication 1: Markov Chain Monte Carlo Analysis of the Variable-Volume Exothermic

Model for a Continuously Stirred Tank Reactor
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(ii) Publication 2: Sensitivity and Uncertainty Analysis of Variable-Volume Deterministic

Model for Endothermic Continuously Stirred Tank Reactor
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Selected Matlab Codes

%% Euler-Maruyama Matlab codes for stochastic model

%% in Scenario A (exothermic) but it can be adopted

% to other SDEs in this dissertation accordingly.

%% Model function

function ds = exomodel(t,y,theta)

V = y(1);C = y(2);T = y(3); Tc = y(4);

Tcin = 10; R = 8.341; Cin = 31.68; Tin = 20.0; Fin = 1.3;

Fout = theta(1);F = theta(2);k0 = theta(3);E = theta(4);

Tmean = theta(5);deltaH = theta(6);rho = theta(7);

Cp = theta(8);U = theta(9);A = theta(10);Fc = theta(11);

Vc = theta(12);rhoc = theta(13);Cpc = theta(14);

k = k0 * exp(-E/R * (1/T-1/Tmean));

rate = k * C;% reaction rate

dVdt =Fin-Fout;

dCdt = (F/V). * (Cin-C)- rate;

dTdt = (F/V). * (Tin-T)- deltaH * rate/(rho * Cp)-((U * A)/(rho * V* Cp))

. * (T-Tc);

dTcdt = (Fc/Vc). * (Tcin-Tc) + U * A/(rhoc * Vc* Cpc). * (T-Tc);

ds = [dVdt;dCdt;dTdt;dTcdt]; %solutions vector

end

clc

clear all; close all;

% Parameter values

theta(1)= 1.3 * 10ˆ(-4); theta(2)= 130e-2; theta(3) = 0.9;
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theta(4)= 0.5; theta(5)= 29.815; theta(6)= -1004.3 * 10ˆ(-3);

theta(7) = 1; theta(8) = 4.186; theta(9) = 10;

theta(10) = 0.015;

theta(11) = 46.5e-2;theta(12) = 50e-2; theta(13) = 1;

theta(14) = 4.186;

%time = linspace(0,20);%time space

n = 10000;

tmax = 2.0;

time = linspace ( 0, tmax, n + 1 );

y0 = [10 31.68 5 20 ]';% initial solutions vector

% Numerical solver

[t, s] = ode45(@exomodel,time, y0,[],theta);

x0 =[ 10,31.68,5,20];

r = 8;

seed = 123456789;

rng ( seed )

%

% Set time steps.

%

dt_large = tmax / n;

dt_small = tmax / n / r;

%

% Carry out the Euler-Maruyama approximate

%integration process.

%

t = linspace ( 0, tmax, n + 1 );

x1 = zeros ( 1, n + 1 );

x2 = zeros ( 1, n + 1 );

x3 = zeros ( 1, n + 1 );

x4 = zeros ( 1, n + 1 );
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x1(1) = x0(1);

x2(1) = x0(2);

x3(1) = x0(3);

x4(1) = x0(4);

Fin = 1.3; F = 1.3; Fout = 1.3 * 10ˆ(-4); k0 = 0.9;

E = 0.5;

Tmean = 29.815;H = -1004.3 * 10ˆ(-3);rho = 1;

Cp = 4.186;

U = 10; A = 0.015; Fc = 46.56 * 10ˆ(-2);

Vc = 50* 10ˆ(-2);

rhoc = 1; Cpc = 4.186; Tcin = 10; R = 8.341;

Cin = 31.68;

Tin = 20.0;

for j = 1 : n

sigma = 0.1;

dw = sqrt ( dt_small ) * randn ( 1, r );

x1(j+1) = x1(j) + dt_large * (Fin-Fout) +

sigma * sum ( dw(1:r) );

x2(j+1) = x2(j) + dt_large * ((F/x1(j)) * (Cin-x2(j))

-k0 * exp((-E/R)

* (1/x3(j) - 1/Tmean)) * x2(j)) + sigma * sum ( dw(1:r) );

x3(j+1) = x3(j) + dt_large * ((F/x1(j)) * (Tin-x3(j))-

(H * k0 * exp((-E/R) * (1/x3(j) - 1/Tmean)) * x2(j))/(rho * Cp) -

U* A* (x3(j)-x4(j))/(rhoc * Cp* x1(j)))+ sigma *

sum ( dw(1:r) );

x4(j+1) = x4(j) + dt_large * ((Fc/Vc). * (Tcin-x4(j))+

U* A* (x3(j)-x4(j))/(rhoc * Vc* Cpc))+ sigma * sum ( dw(1:r) );

end

%Plot the approximate solution.

subplot(2,2,1)

plot ( t, x1, 'r-', 'LineWidth', 2 ), hold on, grid on
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plot(t,s(:,1),'b-','LineWidth', 2);axis tight; grid on

xlabel ( 'time (t)', 'FontSize', 16 )

%legend('V(t)','C(t)','T(t)','T_c(t)')

ylabel ( 'V(t)', 'FontSize', 16, 'Rotation', 0,

'HorizontalAlignment', 'right')

legend('Stochastic', 'Deterministic')

title ( 'Euler-Maruyama solution of volume',

'FontSize', 12 )

subplot(2,2,2)

plot ( t, x2, 'Color',[0.9100 0.4100 0.1700],

'LineWidth', 2 )

, hold on, grid on

plot(t,s(:,2), 'k-','LineWidth', 2);axis tight; grid on

xlabel ( 'time (t)', 'FontSize', 16 )

ylabel ( 'C(t)', 'FontSize', 16, 'Rotation', 0,

'HorizontalAlignment', 'right')

legend('Stochastic', 'Deterministic')

title ( 'Euler-Maruyama solution of Concentration',

'FontSize', 12 )

subplot(2,2,3)

plot ( t, x3, 'm-', 'LineWidth', 2 ),

hold on, grid on

plot(t,s(:,3),'g-','LineWidth', 2);axis tight;

grid on

xlabel ( 'time (t)', 'FontSize', 16 )

ylabel ( 'T(t)', 'FontSize', 16, 'Rotation', 0,

'HorizontalAlignment', 'right')

legend('Stochastic', 'Deterministic')

title ('Euler-Maruyama solution of Temperature',

'FontSize', 12 )

subplot(2,2,4)

plot ( t, x4,'Color',1/255 * [0,104,87], 'LineWidth', 2 ),
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hold on, grid on

plot(t,s(:,4),'Color',[.5 0 .5],'LineWidth', 2);axis

tight; grid on

xlabel ( 'time (t)', 'FontSize', 16 )

ylabel ( 'T_c(t)', 'FontSize', 16, 'Rotation', 0,

'HorizontalAlignment', 'right' )

legend('Stochastic', 'Deterministic')

title ('Euler-Maruyama solution of Cooling Temperature',

'FontSize', 12 )
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