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Abstract
Objective : Agent-based models and simulation (ABMS) can be utilized to
understand the dynamism of transmission and the effect of interventions.
We evaluated using ABMS, the efficacy of insecticide-treated bednets (ITNs) at
different coverage levels and quality of houses for control of malaria in Masasi
and Nanyumbu districts, Tanzania. Methods: The model was developed and
simulated in Anylogic softwarewithmosquitoes, humans, and the environment
along with their attributes as agents. Using field data, buildings of different
qualities were created to be human environment, and ITN use was assigned
to respective human agents. Shapefiles were imported into the built-in global
imaging system map in Anylogic for better placement of buildings using their
coordinates, and coordinates of streams extracted from the study area map
were used to allocate the aquatic environment of the mosquito agents. ITNs
coverage scenarios of 16%, 40%, 64%, and 80% were simulated. The model
was simulated for 90-day period and a model time-step was set to a day. The
primary outcome was the prevalence of human agents with malaria infection
at the end of the 90-day simulation period. Results: At the end of the 90-day
simulation period and initial ITNs coverage of 16% (257/1607), the prevalence
of malaria infection was 15.4% (248/1607). When the coverage was increased
to 40%, 64%, and 80% malaria prevalence declined to 15.1% (242/1607), 14.1%
(227/1607), and 13.9% (223/1607), respectively. ABMS clearly indicated that an
increase in ITNs coverage was associated with a decline in the prevalence of
infected humans and mosquito population in consistency with the field data.
Novelty: This work is unique in a sense that it incorporated the data on house
quality which has direct impact in malaria transmission.
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1 Introduction
Malaria poses a persistent threat to the global public health, particularly among the
under-five children in endemic regions in sub-Saharan African countries (1). Tanzania
is among 10 countries with the highest prevalence of malaria globally, and in 2023 it
accounted for 4% of the malaria cases and 5% of the global malaria-related deaths (1).
Ninety five percent of the malaria infections in Tanzania are caused by P. falciparum,
and An. gambiense complex is a major vector (2,3). Major malaria control tools include
vector control using insecticide-treated bed nets (ITNs) and indoor residual spraying
(IRS), treatment of malaria cases using artemisinin-based combination therapy (ACT),
and the use of chemoprophylaxis in pregnant women (1). Effective clinical trials are
a major method used to assess the effectiveness of malaria control tools under real
field conditions (4–6). However, clinical trials are relatively expensive as they are labor
intensive, and need a lot of resources (6). Therefore, research methods such as modeling
are used to complement clinical trials, and can be used to inform policymakers on the
effectiveness of the control tools before they are introduced in the field (7).

Agent-based modeling and simulation (ABMS) are among computational tools
that have been used to study the epidemiology of infectious diseases such as dengue,
zika, influenza, chikungunya and malaria, and the effect of their interventions (8–10).
An agent can be defined as an object that is introduced into the environment and
senses several parameters needed for making a decision according to its goal (11). The
agent can be a human, mosquito, an organization, a truck, or system depending on
the purpose of the model. In malaria epidemiology simulation, ABMS provides a
dynamic platform that can simulate the interaction between humans and mosquitoes
and with their environment, hence providing the understanding of the malaria
infection dynamics (9,12,13).TheABMS also incorporates individual heterogeneities such
as infection status, immunity level and adherence to interventions (14). The ABMS
algorithmic representation of the behavior of each agent makes it possible to foresee
how each agent behaves and responds at an individual level, leading to a greater state of
complexity and the emergence of new behaviors in relation to disease transmission (7,11).
This in turn are used to design targeted interventions and measure their efficacy (14).
Furthermore, the flexibility and adaptability nature of the ABMS makes it easier for
researchers to implement different scenarios and explore diverse “what-if ” scenarios
and hence select the most appropriate for a specific geographical location (10,14,15). The
ability of ABMS to incorporate geographical data and physical space to capture the
spatial movement of infections and climate data to get the temporal nature of epidemics
also aids in resource allocation and targeted public health measures (7,14).

ABMS has been used in different countries to evaluate the effect of malaria
interventions (8,12,14). Whereas there are studies that have evaluated using ABMS the
effect of ITNs on malaria control, there is limited information on the studies that have
incorporated in themodel the effect of the quality of house eaves i.e., open eaves, partial-
closed eaves, or closed eaves on the effectiveness of ITNs. An eave is a space between the
walls and the roof or ceiling.The predominantmode ofmalaria transmission is through
indoor mosquito biting, and open or partially closed eaves are a major entry point
for mosquitoes in the houses, thus significantly impacting malaria transmission (16,17).
Incorporating in this model the quality of eaves from houses in the study area was
expected to show how the quality of eaves can influence the effect of ITNs in malaria
transmission and intervention. Therefore, the focus of this study was to evaluate using
the ABMS the effect of the coverage of ITNs in relation to the house quality on the
dynamics of malaria transmission.
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2 Methodology

2.1 Study Design, Area, and Dataset

This study used secondary data from a two-arm cluster randomized study (interventional and control) (18), and were
supplemented with other materials from the literature. The data were collected between June 2020 and August 2021 in
Nanyumbu and Masasi Districts, Mtwara region, Tanzania, (Figure 1). The field dataset comprised of demographic details
of the participants, their location, infection status, and ITNs use, and the quality of their houses i.e., open, partially closed, and
closed eaves (18). Explorative Data Analysis was performed using Python to check the quality of data and to remove duplicate
values.

Fig 1. Map of Tanzania showing study areas, Masasi and Nanyumbu districts

2.2 ABMS development

Anylogic platform University Researcher Version 8.8.8 (Anylogic Company, Chicago, Illinois, USA, 2000) was used to develop
and simulate the transmission of malaria and the effect of ITNs use. Simulation of malaria transmission was carried out by
creating human andmosquito agents and their respective environments and attributes (Table 1). Human agents were considered
to be static as they were modeled inside the house and biting was modeled to take place indoors and only at night (3,9). Mosquito
agents at the aquatic stage were modeled to be static and after reaching the adult stage were modeled to be mobile and acting
as malaria vectors. State charts were used to define the behaviors and actions that agents performed during simulation such as
movements for mobile agents and health status changes. Events were created to schedule activities such as the biting process
that had to be triggered only at night (9,15). Different functions were created to make the agents perform certain actions such as
checking whether it is night or day time or adding agents from the database.

The input data set for the model included study area shapefile and databases for the agents.The shapefile was prepared using
Quantum Geographic Information System (QGIS) software and imported into the Anylogic software. Graphs and charts were
used to visualize the results of the simulation as the model runs. The model was simulated for 90-day and a model time-step
was set to a day since changes in human infection status and mosquito population in relation to ITNs coverage were monitored
in days. The initialization of the model was set to take place at 12:00 PM. Table 2, present the input dataset for the model.
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Table 1. Summary of the human and mosquito agents’ input parameters
Agents Parameters Value/range of value Notes/ References

Humans

The incubation period of P. falciparum 9-14 days (3)

Transmission probability of infection
from infectious mosquito to susceptible
human

0.04

The probability of a human agent being
recovered (treatment probability)

0.95-1 (19)

ITNs use Yes/No This study
House category Closed-eaves, open-eaves and

Partially This study
Coordinates Longitude and latitudes
Infection status Positive or negative

Anopheles mosquitoes

Development time from egg to adult 1/(-00094T2+0.049T-0.522) (20)

Number of eggs per reproduction 50–200 eggs
Extrinsic incubation period of P. falci-
parum

111/(T-16) (Days) (21)

Duration of the adult stage 2 weeks in colder climate and up
to 1 month warm climate

(3)

The maximum number of eggs laid by an
Anopheles mosquito in her lifespan

500

Blood meal digestion and eggs develop-
ment in Anopheles mosquitoes’ body

-1.23T+77 (hr) (15,22)

Aquatic mortality rate 0.2 (22)

Adult mortality rate -
log(0.000828T2+0.0036T+0.522)

(15)

Probability of successfully bite 0.3–1 0.3 when the human
agent is sleeping under
bed-net and 1 when the
human agent is not pro-
tected

T, temperature in ∘C

Table 2. Input dataset
Dataset Data Source

Spatial data

Raster
Mean air temperature

TMA
Mean relative humidity
Vector
Point Villages and wards

Open street map
Polyline Rivers
Polygon Boundary of region and district
Point House coordinate

Human data Human demographic and malaria status
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2.3 Human sub-model

Human agents were assumed to be static, and placed in the house agent according to the field data.This is because theAnopheles
mosquito biting starts at dusk and ends at dawn and the focus was on under five children who are expected to be in the house
during that time.The use of ITNwas implemented in individual human agents based on the field data. In the initialization of the
model, the human population was initialized as either susceptible or infected. The heterogeneity of humans was implemented
by inputting the demographic details of the human agents.The interaction of host and vector was implemented using connected
links (23), whereby the host could be connected with multiple vectors and communicate, thus acquiring infection or passing on
the infection.

2.4 Mosquito sub-model

The Anopheles mosquitoes were modeled by considering its life cycle which consists of four stages: egg, larva, pupa and adult.
The first three stages, egg, larva and pupa were modeled as one stage termed aquatic, which lasted for 10-14 days (3). The
mosquito agent was initialized in any of the two stages with 30% aquatic and 70% adult (50% male and 50% female). At adult
stage, female mosquitoes started tomove around asmalaria vectors. Male mosquitoes do not take a bloodmeal, and thus do not
transmit malaria infection; therefore, their movements were not modeled and they exited themodel through the death state (24).
Female mosquitoes need blood for egg maturation, thus their movements for searching for bloodmeal, resting, and oviposition
were modeled.

Usually, femaleAnophelesmosquitoes are expected to start biting at dusk and end at dawn, thus in themodel search for blood
meal was triggered by the event “bite” and the time of the day was checked by the function “is Night” (3,9). If it was night then the
female mosquitoes would start searching for humans to obtain a blood meal. Since humans are modeled inside the house, then
mosquito has to go into the house to get blood meal. In the model, houses were modeled to be in one of the three categories
in relation to the presence of open eaves, partially closed eaves and closed eaves. The probability of mosquitoes entering the
house was controlled by the type of eaves, which were assumed to be 0.55, 0.38 and 0.14 for open eaves, partially closed eaves
and closed eaves, respectively (16,17). Once the mosquito gets in the house it would search for humans for blood meal. After
successfully feeding, female mosquitoes would rest for 2-3 days depending on the environmental temperature for blood to be
digested and the eggs to be developed (3,15,25) and thereafter, they would search for water bodies to lay eggs and then move back
to search for a human to obtain the next blood meal. In this model, it was considered that blood meal search and resting would
take place in the same location (house) and on the same night (10). The repetitive process of searching for blood meal, resting,
and oviposition is known as the gonotrophic cycle, and normally the female mosquito goes up to three cycles in its life time.
The gonotrophic cycle was included in this model since it is central to malaria transmission dynamics (22,26). In each subsequent
gonotrophic cycle, the capacity of a female mosquito to lay eggs was reduced by 20% compared to the previous cycle (22). The
implementation of the gonotrophic cycle is explained in the oviposition algorithm in Figure 2.

Fig 2. Mosquito oviposition algorithm
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2.5 Transmission sub-model

Malaria is transmitted from human to mosquito and from mosquito to human, and it has a significant incubation period.
Susceptible-exposed-infected-recovered (SEIR) model was chosen to represent malaria infection transmission as it takes into
consideration the incubation period which is represented as an exposed state (9). An agent (host or vector) at any time point was
exactly in one of the states. The human agents have four states Susceptible-Exposed-Infected-Recovered (SEIR), and mosquito
agents have three states Susceptible-Exposed-Infected (SEI) as displayed in Figure 3. Susceptible was referred to as a state in
which an agent was not infected but not immune to the infection. Exposed referred to a state where the agent had acquired
infection but had not yet been infectious and thus couldn’t infect other agents. Infected state refers to the state in which an
agent could transmit the infection to another susceptible agent once they come into contact. In recovered state, the human
agent had been cured and the drug continued to provide a prophylactic effect for nearly four weeks, protecting the human
agents against new infections. Thereafter, the human agent would shift back to susceptible state (14,19). During the blood meal
stage of the mosquito, the infectivity status of the vector and host was determined by checking in which of the SEI states the
vector was at that particular time. If the mosquito agent was in the infectious state and the human agent in the susceptible state,
themosquito would transmit the infection to the human agent through themessage passing “infect” and led to the human agent
to transit from the susceptible to the exposed state with the probability of 0.04 (9,19). If the mosquito agent was in a susceptible
state and the human agent was in an infectious state, then mosquito agent would acquire the infection from the human agent
through message passing “get infected” and then transit to the exposed state with the probability of 0.02 (3). Otherwise, it would
just send a “bite” message without transmitting or acquiring infection.Themosquito agent in the exposed state would complete
the incubation period of 9-11 days and transit to the infected state and remain infected throughout its life (3,9).

Fig 3. Agents states and transitions between states’ in mosquito (left) and human (right) in the developed model

2.6 Malaria intervention

Transmission of malaria is highly dependent on the population of the mosquito, the infectivity of the mosquito and their access
to the host. Any action that reduces any of the dependent variables of malaria transmission is considered to be an intervention.
In this paper, ITN has been applied as the intervention which acts as the physical barrier by limiting the access of mosquitoes to
humans and also the insecticides chemical in ITN can either kill or repel mosquitoes (27–29). In modeling the impact of ITN on
mosquitoes, the repellence and killing ability of the insecticidewere considered.Thekilling ability is represented by themortality
rate which is the probability that a mosquito is killed after coming in to contact with insecticide-treated bed-nets. ITN mostly
works on adult female mosquitoes when they are searching for blood meal.Thus, the mortality rate due to insecticide chemical
was modeled for adult females only. When the mosquito was searching for a blood meal, the model checked if the human agent
was under ITN or not. If the human agent was under ITN then one of the three actions would take place; the mosquito would
be repelled by the probability of 0.6 and move on to find another human agent, or would be killed by the insecticide by the
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probability of 0.3 and removed from the model, or would successfully bite by the probability of 0.1 (27). If the human agent was
not under ITN, then it was assumed that the biting would be successful (22). Figure 4 display the mosquito biting algorithm.

Fig 4. Mosquitoes biting algorithm

2.7 Environmental

In the development of the environmental sub-model, houses were integrated as human host environment, and streams as
mosquito environment.The spatial distribution of houseswas also taken into consideration as it influences the human-mosquito
interaction especially in relation to the proximity of human dwellings and potential mosquitoes’ breeding sites. Streams acting
as breeding sites for mosquitoes contribute significantly to the vector population. The monthly temperature was also included
in the model to incorporate its effect in the development rate of mosquito and their overall lifespan (15,25). Several stages in
mosquito life cycle are temperature dependent, such as the incubation period, egg development and mortality rate.

The house agent was created with an empty population and later on, using the function “add_house” the house agent was
added and positioned in the study area according to the coordinates (latitude and longitude) and with the attributes h_id
and h_category. A house had three categories: with closed eaves, partially closed eaves, and open eaves. It was necessary to
incorporate the impact of eaves on controlling the entry of mosquitoes because biting was modeled to occur at night inside the
house. Eaves are known to be the primary entrance of mosquitoes in the house, and eaves’ category is essential in determining
the rate of malaria transmission (16,17).

The mosquito environment in the study area was designed to replicate natural habitats conducive for breeding such as
streams. The stream agent was instantiated with an empty population and later on using the function “add_stream” the stream
agent was added and positioned in the study area GIS map according to the coordinates (latitude and longitude) and with the
attribute stream area for integrating the district specific temperature to be used for the mosquito development cycle.

2.8 Simulation and scenarios tested

The model was simulated with 1607 humans, 1563 houses and the initial number of 1000 entire mosquito populations over a
90-day period with the goal of observing the impact of using ITN on the number of infected human and mosquito population
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density. The increase of bed-net coverage is anticipated to reduce the number of infection to humans by limiting the contact
between humans and mosquitoes, and consequently reducing the mosquito population. Thus, the model was tested with four
scenarios of bed-nets coverage at 16%, 40%, 64%, and 80% to represent the minimum, moderate, maximum, and targeted
coverage nationwide (30). In all four scenarios, the initial number of infected humans was based on the field data which was 217
out of 1607 (13.5%). Likewise, the initial percentage of infected female mosquitoes was 30 of the total female population for
each scenario. Furthermore, the quality of eaves i.e., open, partial-closed, and closed was kept constant for all the scenarios of
bed-nets coverage. Due to stochasticity in the initialization of the mosquitoes and some parameters, for each coverage scenario,
the model was simulated 10 times over a 90-day period to reduce biasness, and the average result was taken for analysis.

Ethical consideration
Approval to conduct this study using secondary data was obtained from Kibong’oto Infectious Diseases Hospital- Nelson

Mandela African Institution of Science and Technology- Centre for Educational Development in Health, Arusha with approval
number KNCHREC00067/09/2022.

3 Results and Discussion

3.1 Relationship between ITNs coverage and mosquito population

The relationship between ITNs coverage and mosquito population at four different scenarios of ITNs coverage is presented in
Figure 5. At the end of the 90-day simulation period, and the initial ITNs coverage of 16% it was observed that the mosquito
population grew by 2400% from the initial of 1000 to 25,000 mosquitoes. With the increased ITNs coverage to 40%, 64%, and
80%, the mosquito population increased only by 100% to 2000, and then declined by 80% to 200, and 97% to 30 mosquitoes,
respectively. On the other hand, at the end of 90-day simulation period the female mosquito population declined from 2,358
to 706, 36, and 13 at the ITNs coverage of 16%, 40%, 64%, and 80%, respectively. The increase of mosquito population by
more than 20 folds at the end of the 90-day simulation and the ITNs coverage of 16% probably indicates that at a very low
ITNs coverage mosquitoes are able to get into contact with a large proportion of unprotected humans and obtain a blood meal.
Thus, at a very low ITNs coverage the effect of this intervention in protecting the whole population becomes almost negligible,
allowing themosquito population to thrive andmore people to be infected. To the contrary, the observed trend of decline in the
population of mosquitoes when the bed nets coverage was increased to 40%, 64% and 80% indicates that the increase in ITNs
coverage means a large proportion of the population is protected by the intervention, therefore, denying the blood meal to a
large proportion of mosquitoes. This in turn leads to a decline in the mosquito population as observed in the model. Female
mosquitoes require a blood meal for the development and maturation of the fertilized eggs in their wombs (3), and when their
access to the bloodmeal is limited it leads to less or no reproduction.Therefore, when the ITNs coverage at the population level
reaches 80%, much fewer mosquitoes are able to access the bloodmeal and reproduce, and also the whole population including
those not using the bed nets is protected against the infection since there is an overall reduction in the mosquito population
and hence reduction in malaria transmission (24,28,29,31).

Fig 5. Impact of ITN coverage on mosquito population
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3.2 Relationship between ITNs coverage and human infection

Before the simulation, 13.5% (217/1607) of the study population were infected with malaria. At the end of 90-day simulation
period and bed-nets coverage of 16%, the prevalence of malaria infection increased to 15.4% (248/1607). When the bed-nets
coverage was increased to 40%, 64%, and 80% the prevalence of malaria infection at the end of the 90-day simulation period
declined to 15.1% (242/1607), 14.1% (227/1607), and 13.9% (223/1607), respectively, Figure 6 and Table 3. Furthermore, at the
end of 90-day simulation period and ITNs coverage of 16% the malaria infection rate increased by 14.1% from 13.5% to 15.1%,
and when the ITNs coverage was increased to 40%, 64%, and 80%, the infection rate increased only by 11.9%, 4,4%, and 2.9%,
respectively. Thus, as the ITNs coverage was increasing the trend of prevalence of humans infected with malaria was declining.
Furthermore, at 16% ITNs coverage malaria infection in the population grew by 14%, however, when the coverage of ITNs was
increasing, the infection growth was declining, whereby at the coverage of 80% it grew only by 2.9%. This is consistent with
the study by Gharakhanlou et al which showed the trend of decline in malaria infection with an increase in ITNs coverage (14).
In Iran Gharakhanlou et al., indicated that with the bed-nets coverage of 10%, 25% and 40% malaria prevalence declined by
18.9%, 42.9% and 90.2%, respectively (14). The ABMS findings also showed that the prevalence of human infected with malaria
at the ITNs coverage of 80% was 13.9%, and it was almost similar to the prevalence of 14.2% reported in a study conducted by
Mwaiswelo et al., at the ITNs coverage of 82% (18). On the other hand, the change of ITNs coverage from 16% to 40% reduced
malaria transmission only by 1.9%, whereas the increase of ITNs coverage to 64% and 80% reduced the transmission by 8.4%
and 9.7%, respectively.

Fig 6. Infected human in different ITN coverage

Table 3. Infected human in different ITN coverage
Variable 16% Coverage 40% Coverage 64% Coverage 80% Coverage
Initial infection 13.5% (217/1607) 217/1607 (13.5%) 217/1607 (13.5%) 217/1607 (13.5%)
Final infection after 90 days 15.4% (248/1607) 242/1607 (15.1%) 227/1607 (14.1%) 223/1607 (13.9%)
Change of infection from the initial value 14.1% (1.9/13.5) 11.9% (1.6/13.5) 4.4% (0.6/13.5) 2.9 (0.4/13.5)
Infection reduction rate 0% 1.9% 8.4% 9.7%

Comparison between human agents who were using bed-net and those not using was performed at all four ITNs coverage
scenarios, Table 4. At the end of 90-day simulation period and bed nets coverage of 16%, the new infection rate was 0.5% (1/217)
among those using bed nets, and it was 13.8% (30/217) among those not using bed-net. When the ITNs coverage was increased
to 40%, 64%, and 80% the new infection rate among those not using bed nets declined to 11.5% (24/217), 4.1% (9/217) and
1.9% (4/217), respectively. These findings indicate that the risk of malaria infection is lower to bed net users compared to those
not using. Moreover, the reduced rate of infection to non-net users with increased coverage of bed-nets indicates the provision
of indirect protection to non-user due to the community effect, which occurs when a significant number of people in the
community sleep under the ITNs, resulting in the reduction of mosquito reproduction capacity and lifespan, thereby reducing
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the transmission ofmalaria (28,29,31). Our findings are in agreement with those fromMalawi (32) and Kenya (33). InMalawi bed net
use reduced malaria infection by 30% compared to non-net use (32), whereas in Kenya there was a reduction of malaria parasite
carriage by 45% among net users (33). Similar findings have also been reported in Benin, Cameroon, India and Sudan (34).

Strength, limitation and future work

The strength of this study is in the incorporation in themodel the quality of houses and air temperature, which have direct effect
in malaria transmission and mosquito life cycle, respectively. On the other hand, the human agent was modeled as static, and
this is a limitation since if the human was mobile would probably modulate the human agent - mosquito contact, and hence the
malaria prevalence in the population. In the future work human mobility will be considered as well as the additional of other
interventions such as drugs.

Table 4. Infected human with and without bed-net
Variable 16% Coverage 40% Coverage 64% Coverage 80% Coverage
Bed net usage,
N=1607

Use
bed-net

No
bed-net

Use
bed-net

No
bed-net

Use
bed-net

No
bed-net

Use
bed-net

No
bed-net

Initial 20 (1.2%) 197
(12.3%)

55 (3.4%) 162
(10.1%)

103 (6.4%) 114
(7.1%)

134 (8.3%) 83
(5.16%)

Final 21 (1.3%) 227
(14.1%)

56 (3.5%) 186
(11.6%)

104 (6.5%) 123
(7.7%)

136 (8.4%) 87 (5.5%)

New Infection,
N=217

1 (0.5%) 30 (13.8%) 1 (0.5%) 24 (11.5
%)

1 (0.5%) 9 (4.1%) 2 (0.9%) 4 (1.9 %)

N, total number in a population per category

4 Conclusion
TheABMS clearly depicted an inverse relationship between ITNs on one hand andmosquito population growth and proportion
of infected humans on the other hand, whereby an increase in ITNs coverage was associated with a decline in the prevalence
of infected humans and mosquito population in consistency with the field data. Thus, ABMS using Anylogic offers a powerful
platform for studying malaria transmission dynamics and assessing the impact of interventions.
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