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ABSTRACT 

Bananas are among the most widely produced perennial fruit crops. Farmers largely produce 

bananas because they are important staple food and cash crops. However, bananas are highly 

affected by Fusarium Wilt and Black Sigatoka diseases. These diseases cause yield losses 

ranging from 30% to 100% of all the banana produce. Farmers face challenges in detecting and 

mitigating the effects of these two banana diseases because of a lack of knowledge of the 

diseases and the use of traditional eye observation method in detection. This study is inspired 

by the success of deep learning and computer vision in detecting a wide range of plant diseases. 

The study proposed the use of deep learning to automate the early detection of Fusarium Wilt 

and Black Sigatoka banana diseases. Mask R-CNN and U-Net image segmentation deep 

learning models were assessed for instance and semantic image segmentation. A dataset 

comprising 27 360 images of banana leaves and stalks that are healthy, Fusarium Wilt infected, 

and Black Sigatoka infected collected from the farm was used to train the models. An addition 

of 407 images of other things apart from the banana plant were downloaded from the internet 

and used to train the CNN model. From the experiments, the Mask R-CNN model achieved a 

mean Average Precision of 0.045 29 in segmenting the two banana diseases. The U-Net model 

achieved an Intersection over Union (IoU) of 93.23% and a Dice Coefficient of 96.45%. 

Similar results were obtained by Loyani et al. (2021) when they segmented a tomato plant paste 

called tuta absoluta using a U-Net model. Their model achieved a Dice Coefficient of 82.86% 

and an Intersection over Union of 78.60%. Additionally, the Fusarium Wilt and Black Sigatoka 

infected banana leaves and stalks were segmented using the Mask R-CNN and U-Net models. 

The CNN model yielded an accuracy of 91.71% in classifying the two banana diseases. Similar 

results were obtained by Sanga et al. (2020) when they deployed an Inceptionv3 model, which 

achieved an accuracy of 95.41%. The CNN model was deployed in a mobile application to be 

used by farmers to detect the two banana diseases early. The mobile application could detect 

banana diseases early and provide research-based mitigation recommendations that 

smallholder farmers and other agricultural stakeholders can use to avoid yield losses and 

financial losses. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Problem 

The United Nations’ 2nd Sustainable Development Goal (SDGs) is to “End hunger, achieve 

food security and improved nutrition, and promote sustainable agriculture” (United Nations, 

2021). This goal cannot be achieved without good approaches such as the use of artificial 

intelligence in crop disease management and proper structured resource utilization. According 

to reports (Che’Ya et al., 2022), farmers are capable of automatically identifying and 

detecting infections and diseases early on, which helps to lessen their effects, enhance 

treatment results, and stop infections from recurring in agriculture. 

According to the 2020 economic survey report, agriculture generated 26.9% of Tanzania's 

Gross Domestic Product (GDP), making it a significant economic sector (National Bureau of 

Statistics et al., 2021). However, crop diseases have been the greatest challenge affecting major 

food security crops, including bananas. Nearly 70 million farmers grow bananas in the humid 

and sub-humid tropics of Africa, making it one of the main staple foods and cash crops that are 

mainly grown by small-scale farmers (FAO, 2021). Regardless of its importance in household 

food security and subsistence, this crop is highly attacked by diseases, particularly Fusarium 

Wilt and Black Sigatoka (Sanga et al., 2020; Ramadhani, 2017). It is reported that yield losses 

due to Fusarium Wilt and Black Sigatoka diseases in bananas range from 30% to 100% in 

susceptible cultivars and highly susceptible respectively (Bubici et al., 2019; Vézina & Van-

den-Bergh, 2020; FAO, 2017). 

Black Sigatoka sometimes called Black Leaf Streak Disease (BLSD) is a leaf spot disease 

caused by heterothallic and airborne fungus Pseudocercospora fijiensis. The fungus that causes 

this disease was discovered in a Fiji island valley called Sigatoka, where it gets its name 

(Vézina & Van-den-Bergh, 2020). Nevertheless, it is believed to have been common in the 

Asia-Pacific region much earlier. The disease has been found in Taiwan, Philippines, 

Indonesia, China, Vietnam, Malaysia, Singapore, and Thailand but in these countries, the 

fungus is not found in all locations (Vézina & Van-den-Bergh, 2020). The Black Sigatoka 

disease was initially confirmed to be in Gabon in Africa in 1980. The countries in West Africa 

that have the diseases are Cameroon, Togo, Benin, Nigeria, Ghana, the Democratic Republic 

of Congo, and Côte d'Ivoire. In 1987, Black Sigatoka was confirmed in East Africa on Pemba 
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Island in Tanzania. It spread to neighboring countries like Uganda, Kenya, Burundi, 

Madagascar, Rwanda, Malawi, Comoros, Mayotte, and in East Africa. According to reports, 

Black Sigatoka is most common in mid-altitude regions below 1350 meters above sea level. 

Until recently, it was not seen above this altitude (Johanson et al., 2000). However, the fungus 

has gradually adapted to higher and cooler altitudes (Erima et al., 2017). 

Fusarium Wilt of bananas also called Panama disease is a destructive banana disease caused 

by a soil-borne fungus known as Fusarium oxysporum f.sp. cubense race 1 (Foc). In Australia's 

banana plantations, fusarium wilt disease was first identified in 1876  (Altendorf, 2019). It was 

then confirmed in Panama in 1890 where it was an epidemic (Daly & Walduck, 2006). 

Fusarium wilt, the first stain of the disease highly affected the susceptible Gros Michel banana 

which dominated the banana trade globally in Central America. In 1950, the disease caused 

the Cavendish type of banana to replace the Gros Michel banana type because Gros Michel 

was highly affected by Fusarium wilt disease (Vézina, 2022). There are four strains or races of 

Foc which are Race 1, Race 2, and Race 4 which infects bananas, and Race 3 which is a 

pathogen for Heliconia spp instead of banana (Ploetz et al., 2015). This study focuses on 

Fusarium Wilt Foc Race 1 which is the first stain of the disease. 

In Tanzania, farmers are facing several challenges, including climate change, a lack of 

agricultural tools, diseases, pest attacks, and the growth of weeds that cause damage to plants 

and decrease yields. These challenges affect the prosperity of farmers as well as the nation’s 

economy. It is therefore important to find and implement the appropriate and effective solutions 

to the challenges to improve productivity. Artificial intelligence (AI) has propelled agricultural 

solutions that enable early pest and plant disease detection, health assessment, crop monitoring, 

early warning systems, and evaluation of tree canopy cover, etc. Several studies have been 

done that assessed deep learning models for detecting crop diseases in plants (Sanga et al., 

2020; Ramcharan et al., 2017; Mkonyi et al., 2020; Loyani, 2021). However, to the best of the 

author's knowledge, the segmentation of Black Sigatoka and Fusarium Wilt banana diseases 

has not been addressed. 

Early disease detection using automatic plant disease detection techniques is beneficial. The 

automatic detection of plant diseases by capturing symptoms as features on plant leaf images 

is easier, less time-consuming, and less prone to errors when compared to disease detection 

through simple naked-eye observation done by farmers and experts. Deep learning can be used 

to automate the detection of plant diseases. By identifying the colour difference in the diseased 
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area, deep-learning image processing identifies the region of the leaf image that is affected by 

the disease. The region of interest (i.e., the area in the image of the banana plant affected by 

the disease) can be identified using a mask provided by image segmentation. Different 

properties of a picture, such as colour, boundaries, shapes, and texture, are used to segment the 

region of interest (Singh, 2017). This study developed an early detection mobile application 

for banana diseases deploying the CNN deep learning model. The mobile application will 

enable small-holder farmers to quickly detect banana plant diseases to intervene early. 

Furthermore, the study generated a banana image dataset that was shared on machine learning 

open-access repositories to facilitate research and teaching at different initiatives in Africa and 

globally.  

1.2 Statement of the Problem 

Despite government efforts to set aside funds each year for the growth and development of the 

agricultural sector, farmers continue to face issues that result in plant damage and decreasing 

plant yields. Diseases like Fusarium Wilt and Black Sigatoka affect the banana plant and lead 

to a decrease in plant yields. Most local banana farmers use simple naked-eye observation done 

by the farmers themselves and the agricultural experts to detect the presence of diseases on the 

plants, which is cumbersome, costly, prone to errors, and time-consuming. The current state of 

plant disease diagnosis is transitioning from disease identification using visible symptoms by 

the eyes to the use of automatic, data-driven solutions applying deep learning and computer 

vision techniques, which are easier and cheaper.  

Deep learning has been applied in several studies to identify tomato diseases (Mkonyi et al., 

2020; Shijie et al., 2017; Loyani, 2021); cassava diseases (Nabenda et al.,  2020; Ramcharan 

et al., 2017); and banana diseases (Sanga et al., 2020; Owomugisha et al., 2014). The goal of 

this research was to create a deep-learning image segmentation model for the early 

identification of banana diseases. Deployment of the model was done in a mobile application 

to enhance its usability by the farmers. The developed mobile application also provided 

recommendations for curing banana diseases.  

1.3 Rationale of the Study 

The agriculture sector is essential to a nation's economy because it produces food, one of 

humanity's most fundamental requirements, goods for export to earn foreign currency, and raw 

materials for manufacturing. Bananas among the staple food and cash crops are highly 
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produced in many countries, including Tanzania. This crop has great potential to mitigate the 

presence of food insecurity and alleviate poverty and hunger, especially in developing 

countries. In Tanzania, a total of 20 735 banana-growing smallholder farmers were reported to 

have banana disease occurrences in 2011 (Sanga, 2020). The damage being caused by the 

diseases on banana plants continuously, negatively affects farmers by causing loss of yields 

and the economy of the country through loss of income. Farmers now need to be able to identify 

diseases early in the plant and be knowledgeable about the best ways to control the diseases 

due to the rise in banana yield loss that they are experiencing. This study, therefore, developed 

an early-detection mobile application for banana diseases. The study trained deep learning 

models from a dataset of images of banana leaves and stalks using image segmentation and 

classification methods. A CNN deep learning model was deployed in a mobile application and 

could advise farmers and extension officers on the most effective ways to reduce the effects of 

the diseases. 

1.4 Objectives 

1.4.1 General Objective 

To develop an image segmentation deep learning model for early detection of banana diseases. 

1.4.2 Specific Objectives 

The study aimed to achieve the following specific objectives: 

(i) To identify the requirements for developing the image segmentation deep learning 

model 

(ii) To develop an image segmentation deep learning model for detecting banana diseases. 

(iii) To deploy the developed model in a mobile-based application. 

(iv) To validate the performance of the developed mobile-based application.  

1.5 Research Questions 

The study intended to answer the following questions: 

(i) What are the requirements for developing the image segmentation deep learning model? 



5 
 

(ii) How can an image segmentation deep learning model be developed to detect banana 

diseases? 

(iii) How can we deploy a deep learning model in a mobile-based application? 

(iv) How can the performance of the developed mobile-based application be validated? 

1.6 Significance of the Study 

The objective of this study was to solve the challenges faced by farmers and agricultural experts 

when they try to manually detect diseases in farms using naked-eye observation by developing 

a mobile-based application for detecting banana diseases. This mobile application deployed a 

classification deep learning model to accurately identify banana diseases for farmers. 

The developed mobile-based application accurately detects the presence of banana diseases 

early and provides information on recommended steps to take and cures to use for the detected 

diseases on the plant, allowing the plant to be cured before diseases have affected the entire 

plant and rendering mitigation efforts ineffective. This will help improve the banana yields for 

farmers by saving the infected plants from diseases early and causing them to produce banana 

fruits. 

The solution developed by this study will play a role in achieving the United Nations’ 2nd SDG, 

which is to “End hunger, achieve food security and improved nutrition, and promote 

sustainable agriculture” (United Nations, 2021). By early recommending treatments to banana 

plants afflicted by diseases, the created application will also contribute to achieving food 

security by enabling smallholder farmers to save the plants and produce bananas for 

consumption, sale, and export. 

1.7 Delineation of the Study 

This study focused on developing a mobile application for identifying Black Sigatoka and 

Fusarium Wilt fungal banana diseases because they cause high yield losses. The dataset used 

to develop the mobile application comprised of coloured images, that is, Red-Green-Blue 

(RGB) colour format, collected from the farms and other images downloaded from the internet. 

The experiment results show that the developed mobile application could accurately identify 

the two diseases, healthy banana leaves, and other images not of the banana plant. Further 

research could improve the performance of the mobile application and increase its ability to 
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identify more plant diseases and provide mitigation recommendations for the identified 

diseases. 

However, as part of the limitation this study only focused on identifying the two banana 

diseases, healthy banana leaves, and images not of the banana leaves or stalks without including 

dry banana leaves and other banana diseases. This factor may affect the accuracy of the 

prediction done by the model. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Bananas 

Bananas and plantains regarded as bananas are among the most widely produced perennial fruit 

crops (Brown et al., 2017). Based on the report by the Food and Agricultural Organization 

Statistics (FAOSTAT), in 2021 the annual global production of bananas was 124 million tons, 

and 54.4% of these tones were produced in Asia, with India leading by producing 33 million 

tons and Africa producing 22 million tons which is equivalent to 22.7% of the global 

production (FAOSTAT, 2021). Bananas are among the most traded fruits globally (Voora et 

al., 2020). Green bananas are the primary source of carbohydrates for around 30% of 

Tanzanians (Suleiman, 2018). They provide a sustainable source of food supply because they 

produce fruits throughout the year. Bananas can be eaten fresh as fruits, fried, cooked, and 

processed to make juice, beer, and baby food (Daniel, 2016). Ripe bananas are a cheap source 

of energy, vitamins, and potassium. Cooking bananas is an essential meal for millions of people 

(Voora et al., 2020). Despite their many advantages, bananas are highly infected by diseases, 

including Fusarium Wilt and Black Sigatoka fungal diseases (Sanga et al., 2020). 

2.2 Black Sigatoka 

The symptoms of Black Sigatoka disease normally start 10 to 14 days after infection by having 

small and pale-yellow spots on young banana leaves (Soares et al., 2021). Within a few days, 

the spots enlarge to a few centimetres, turn brown, and have light grey centers, and then the 

tissue surrounding the lesions deteriorates and turns yellow as these patches spread (Soares et 

al., 2021). This leads to the entire leaf becoming brown which interferes with photosynthesis 

and eventually, the leaf dies as lesions combine. The disease causes uneven and premature 

ripening of the banana fruit. Production of conidia and ascospore at stages 2 to 4 and 5 to 6 

occurs respectively. Black Sigatoka disease affects all banana varieties, with a few exceptions 

that are tolerant to the disease, including the recently released Taliban 1-4 species (Shimwale, 

2021). Conidia and ascospores can become windborne in diseased plantations and move up to 

tens of kilometres from the site of the disease, but ascospores are more crucial to the 

epidemiology of the disease's transmission by windborne dispersal. However, exposure to 

sunlight's UV rays seems to limit the long-distance airborne dissemination of viable spores. 

Dew, rain, and irrigation splashes are ways in which water can spread the disease over short 
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distances (Churchill, 2010; Muimba-Kankolongo, 2018). The disease can be controlled using 

weekly fungicide applications (Vézina & Van-den-Bergh, 2020). It is recommended to 

alternate protectants and systemic fungicides to delay or manage fungicide resistance. 

Production of resistant strains to fungicides is a common phenomenon that makes the 

management of this disease to be complicated (Isaza et al., 2016). Again, it is difficult for 

smallholder farmers to control the disease due to fragmented farms (Isaza et al., 2016). 

Therefore, early detection of the disease is important for its proper management. 

Black Sigatoka affects the banana plant leaf in six different stages. Stage 1 appears as little, 

yellowish dots that are below 1 mm in size on the underside of the leaf. Stage 2 appears as red 

or brown streaks first on the leaf's underside, then on its upper side. On the leaf’s upper surface, 

the streak will progressively turn black. The streaks’ diameters get longer and larger in stage 

3. Stage 4 appears as a brown stain on the leaf's bottom surface and a black spot on the leaf's 

upper surface. The spot seems circular or elliptical. The first necrotic stage is stage 5. The stain 

has reached the underside of the leaf blade and is entirely black with a yellow halo surrounding 

it. In stage 6, the center of the spot becomes light grey, dries out, and is surrounded by a 

prominent black ring and a light-yellow halo. These marks are still noticeable after the leaf has 

dried out because the ring remains persistent (Vézina & Van-den-Bergh, 2020). Figure 1 shows 

the different stages in which Black Sigatoka affects the banana leaves. 

 

 

 

 

 

(1)  (2)  (3) 

    
 

 

 

 

 

 

(4)  (5)  (6) 

Figure 1:     Different stages in which Black Sigatoka develop and affect the banana leaves 
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2.3 Fusarium Wilt 

Fusarium Wilt infection starts in the roots where the fungal spores (Chlamydospores, 

macroconidia, and microconidia) infect the roots of banana plants and then spread in the corm 

(Vézina, 2022). Fusarium Wilt symptoms show on the older leaves to wilt and become yellow 

then the new leaves follow (Viljoen et al., 2016; Jackson, 2014). As the illness advances, the 

yellowed, wilted leaves eventually collapse, forming a covering of dead leaves surrounding the 

pseudostem of the banana plant (Altendorf, 2019). This continues until all the leaves fall and 

dry up, at which point the plant dies. The splitting of the pseudostem's base is another common 

sign (Viljoen et al., 2016; Jackson, 2014). Figure 2 shows the effects of Fusarium wilt on 

banana stalks and leaves. The dying bananas release chlamydospores. These spores can survive 

as endophytes in the soil for more than 30 years, multiplying in various hosts like weeds 

(Vézina & Rouard, 2021). Chemical pesticides and fungicides cannot be used to control the 

fungus. The easiest way to ensure that bananas can be grown is to plant resistant cultivars on 

affected soil or to start plantations on unaffected land (Vézina, 2022). Banana varieties that are 

highly susceptible to Fusarium Wilt disease are Mchare, Sukari Ndizi, all kinds of Pisang 

species, and Kayinja (Jomanga et al., 2022; Jomanga & Lucas, 2021). The movement of 

contaminated planting materials, furrow irrigation, surface runoff water, and diseased soil are 

common ways that the soil-borne fungus is disseminated (Jackson, 2014). The spread may also 

be facilitated by contaminated soil on vehicles, tools, and shoes (Daly & Walduck, 2006; 

Altendorf, 2019).  
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Figure 2:     Damage caused by Fusarium Wilt on banana plants (a) How Fusarium Wilt 

affects the banana stack (b) How Fusarium Wilt affects banana leaves 



10 
 

2.4 Deep Learning Models and Feature Extraction 

Deep learning is a subset of machine learning that trains a computer to make decisions like 

human beings by learning from examples (Ral, 2020). Deep learning is mainly used with 

unstructured datasets like images, videos, audio, texts, sensors, and time series data. With these 

datasets, deep learning can solve problems like image identification and object detection using 

images and video datasets, solve speech recognition problems using the audio dataset, solve 

natural language processing problems like question answering, machine translation, sentiment 

analysis, and text classification using text dataset, as well as analyze sensor data and time series 

data. With image datasets, deep learning can be used in object localization like image 

segmentation and object detection, or in image classification. In this study, a convolutional 

neural network model was trained for classification, and Mask R-CNN and U-Net models were 

trained for instance and semantic segmentation tasks respectively. Feature extraction is done 

automatically by deep learning models. This section discusses the architectures and feature 

extraction done by the models assessed in this study. 

2.4.1 Convolutional Neural Network Feature Extraction 

The two stages of the CNN model’s operation are feature extraction and classification. Figure 

3 shows the entire process of a CNN model. 

 

Figure 3:     The CNN architecture illustration 

After the feature extraction phase, which involved using numerous filters and layers to extract 

information and characteristics from the images, the images were categorized in the 

classification stage by their classes. 
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The feature extraction process includes the following: 

(i) Input layer 

(ii) Convolution layer and activation function 

(iii) Pooling layer 

The output feature maps from the feature extraction process are run in a flattened layer before 

being fed into the fully connected layer or dense layer. The classification phase includes the 

fully connected layer and activation function.  

(i) Input Layer 

The input images are coloured (red, green, and blue) (RGB). Each image has pixels that range 

from zero to 255. Before introducing the images to the model, they were normalized by 

converting them to a range of zero to one. Input images were resized to 512x512. Therefore, 

the input shape was 512x512x3, where 3 is the colour channel.  

(ii) Convolution Layer 

Multiple filters were applied to the input image in a convolution layer to extract its features. 

Each filter was applied to all parts of the image to extract feature maps that help classify the 

image. Figure 4 shows examples of different filters applied to the same input image. 
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Figure 4:     Example of different filters applied to the same input image 
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Figure 5:     An example of the convolutional filter being used to transform an input 

feature map into an output feature map 

Figure 5 illustrates the process of applying a 3 x 3 convolutional filter to the entire input image 

to create an output feature map. Depth relates to how many filters were applied during the 

convolution operation. For example, in Fig. 4, there is an example of five filters being applied 

to the same input image, resulting in five different output feature maps. The depth in Fig. 4 was 

five. As the number of filters increased, more accurate results were obtained. The stride refers 

to how many pixels our filter matrix slides over the input matrix. A stride of one means that 

2+0+5+1+2+0+0+0+5 

3+0+9+2+3+0+0+0+7 

5+0+7+3+4+0+0+0+2 

1+0+3+2+4+0+0+0+4 
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the filter moves over one pixel every time. A stride of two indicates that the filter jumps two 

pixels at a time as it slides around the input matrix. The feature maps get smaller as the stride 

gets bigger. In Fig. 5, a stride of one is used. There are occasions when it is desirable to pad 

the input matrix with zeros around the border to use the filter to the bordering sections of our 

input image matrix. The benefit of zero padding is that it enables us to control the size of the 

output feature maps. Not using zero padding is referred to as a "narrow convolution" while 

zero padding is often referred to as a "wide convolution."  

Figure 6 shows an example of adding zero padding to an input image. Adding zero-padding in 

Fig. 6 results in an output feature map with the same size as the input feature map, which is 

5x5. While the same 3x3 filter was used in Fig. 5, the lack of zero-padding on the input image 

resulted in an output feature map of size 3x3. 
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Figure 6:     An example of padding the input matrix with zeros around the border so as 

to enhance the output feature map size 

The Rectified Linear Unit (ReLU) activation function was used on every convolution operation. 

It is a function that replaces all negative numbers with zero and returns a number if it is larger 

than zero. The ReLU helps us prevent the transmission of negative values to the following 

layer, which can affect the summing function. Figure 7 shows how the ReLU activation 

function is applied, and replaces all the negative numbers with zero. 
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Figure 7:     An illustration of the application ReLU operation 

(iii) Pooling Layer 

The pooling layer, which reduces the dimensionality of each feature map while preserving the 

most crucial features, is also known as down-sampling or subsampling. Pooling is also 

described as the method that minimizes the number of pixels in your image while preserving 

its semantics. The kinds of pooling include Max, Average, and Sum pooling. Figure 8 shows 

the process of max pooling. The left-hand box in Fig. 8 could represent the pixels in a black-

and-white image. The pixels are further grouped into 2x2 arrays, so from 16 pixels, 4 groups 

of 2x2 arrays are obtained. The groups are called pools. Then, the maximum value (Max 

Pooling) is chosen in each group, and those values are put back together to create a new image. 

Sum pooling takes the total of all the values in each group, average pooling takes the average 

value from the groups. As a result, the pixels on the left image are decreased by 75% (from 16 

to 4), and the new image is made up of the maximum value from each pool (Moroney, 2021). 

 

Figure 8:     Max Pooling illustration (Moroney, 2021) 

2.4.2 Mask Region-Based Convolutional Neural Network Model for Instance 

Segmentation 

Instance segmentation merges the objectives of object detection which aims to classify each 

object and locate it with a bounding box and semantic segmentation whose goal is to classify 

each pixel into predefined categories without distinguishing object instances. In addition to the 

classification and bounding box regression branches, the Mask Region-based Convolutional 



16 
 

Neural Network is a Faster R-CNN extension that includes a segmentation mask predicting 

branch on every region of interest (He et al., 2018). For each object, Faster R-CNN returns a 

bounding box and its class label with a confidence score (Ren et al., 2016). Mask R-CNN 

works more efficiently in instance segmentation because it decouples mask and class prediction 

(He et al., 2018).  

(i) Mask Region-Based Convolutional Neural Network Model Architecture 

Figure 9 depicts the architecture of the Mask R-CNN model. 

 

Figure 9:     Assessed Mask R-CNN model architecture 

Backbone 

Backbone is the primary feature extractor of Mask R-CNN. Residual networks (ResNets) with 

or without feature pyramid network (FPN) are frequently used for this component. When data 

from an image is introduced into a ResNet backbone, it must first pass through several 

bottleneck blocks before it can be converted into a feature map. Figure 10 illustrates a ResNet 

backbone.  
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Figure 10:   Mask R-CNN ResNet backbone (Zhang, 2021) 

Region proposal network 

The function known as the Region Proposal Network (RPN) scans the feature map from the 

backbone and suggests regions that might contain objects of interest, i.e., Regions of Interest 

(ROI). Figure 11 shows the process of the RPN.  

 

Figure 11:   Region proposal network (Zhang, 2021) 

Region of interest alignment 

Based on the Regions of Interest (RoIs) suggested by the Region Proposal Network (RPN), 

Region of Interest alignment (RoIAlign) extracts feature vectors from a feature map and 
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converts them into a fixed-sized tensor for further processing. Scaling is used by RoIAlign to 

match RoI with their corresponding locations on the feature map. The following 

parallel branches for object detection and mask generation process the resulting RoI's finer 

feature map. Figure 12 illustrates RoI Align. 

 

Figure 12:   RoI Align (Zhang, 2021) 

Object detection branch 

An individual RoI object category and a more precise instance bounding box can be predicted 

based on the individual RoI feature map. Figure 13 shows the object detection head. 

 

Figure 13:   The Object detection head (Zhang, 2021) 

Mask generation branch 

A transposed convolutional layer and a convolutional layer on the mask-generating branch are 

progressively fed the RoI feature map. This is a fully convolutional network branch. For one 
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class, a single binary segmentation mask was generated. The output mask was then selected 

based on the class prediction made by the object detection branch. This aids per-pixel mask 

prediction in preventing competition between multiple classes. Figure 14 illustrates the mask 

generation head. 

 

Figure 14:   The Mask generation head (Zhang, 2021) 

(ii) Mask Region-Based Convolutional Neutral Network Feature Extraction 

As discussed in the Mask R-CNN architecture section in the Backbone subsection, the 

Backbone is the main feature extractor of Mask R-CNN. Data is routed through numerous 

bottleneck blocks as images are supplied into the ResNet backbone before being transformed 

into a feature map. As illustrated in Fig. 10, to make up a deep residual network, several 

residual bottleneck blocks were stacked. In a bottleneck block, input passes in two directions: 

the multiple convolutional layers and the other identical shortcut connection. Their outputs are 

then added element-wise. The feature map from the final backbone’s convolutional layer 

comprises abstract information about an image, which includes different object instances, their 

classes, and spatial attributes (Zhang, 2021). Because the residual bottleneck blocks in the 

ResNet backbone comprise convolutional layers, the feature extraction done in this part will 

be discussed in the CNN feature extraction. 

As illustrated in Fig. 11, in the Region Proposal Network (RPN), the backbone’s output feature 

map was processed by a convolutional layer, which generates a c-channel tensor who’s each 

spatial vector (also having c-channels) is associated with an anchor center. A set of anchor 

boxes with varied scales and aspect ratios are formed from a single anchor center. The anchor 

boxes are different regions that are evenly spaced throughout the entire image and fully encircle 

it. The c-channel tensor is then processed by two siblings 1x1 convolutional layers. One is a 
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binary classifier that predicts if each anchor box contains an object. Each c-channel vector is 

mapped to a k-channel vector (represents k anchor boxes with various scales and aspect ratios 

sharing one anchor center). The second is an object-bounding box regressor. It predicts the 

offsets between the anchor box and the true object bounding box. Each c-channel vector is 

mapped into a 4K-channel vector. The bounding boxes with the highest objectness score are 

selected out of any overlapped bounding boxes that might suggest the same object and discard 

the others. This is the non-max suppression process (Zhang, 2021). 

RoIAlign is the step that finds out exactly where each RoI from RPN is in the feature map. 

Imagine that our model translates a 512x512x3 (width, height, and RGB) input image into a 

16x16x512 feature map with a scale factor of 32 using VGG16 (Fig. 15). 

 

Figure 15:   Extracting a feature map from an input image using VGG16 

Then a single proposed RoI (145x200 box) was used and mapped onto the feature map (Fig. 

16).  

 

Figure 16:   The RoI target with coordinate size 

Since certain of the dimensions of objects cannot be divided by 32, RoI (not align) was placed 

with our grid (Fig. 17). 
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Figure 17:   The RoI on the feature map (Erdem, 2020) 

As an example, the pooling layer is specified to be of size 3x3, so the output shape is 3x3x512, 

as seen in Fig. 18. 

 

Figure 18:   Pooling layer (Erdem, 2020) 

Region of Interest Alignment is a quantization-free layer applied by Mask R-CNN to faithfully 

preserve exact spatial locations. This is an improvement to RoIPool, which was used by Faster 

R-CNN. The RoIPool does coarse spatial quantization for feature extraction (He et al., 2018). 

RoIPool's quantization technique restricts input from real numbers to integers (Erdem & 

Kemal, 2020). Two types of quantization are applied by Fast R-CNN. The mapping process 

does the first quantization then the pooling process does the second quantization (Fig. 19). The 

problem with the quantization used in RoI Pooling is that it generates a great loss of data as 

shown in Fig. 20. Every time quantization is done, a part of the information regarding the object 

of interest (RoI) goes missing. 
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Figure 19:   Quantization when mapping and pooling (Erdem, 2020) 

 

Figure 20:   The RoI pooling quantization losses (shown by the light and dark blue colors) 

and data gain (represented by the green color)  (Erdem, 2020) 

In RoIAlign, the quantization process was skipped by partitioning the original RoI into nine 

boxes of the same size and using bilinear interpolation inside each one, as illustrated in Fig. 21. 

The pooling layer’s size and the mapped RoI together define the size of each box. Considering 

that a 3x3 pooling layer is utilized, the mapped RoI (6.25x4.53) was divided by three. This 

results in a rectangle with a width of 2.08 and a height of 1.51. 
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Figure 21:   The RoI box size (Erdem, 2020) 

Figure 22 shows how our RoI is divided into boxes.  

 

Figure 22:   The RoI divided into equal boxes (Erdem, 2020) 

In Fig. 22, the top left box covers six different grid cells. Part of the data must be sampled to 

extract value for the pooling layer. Four sampling points were established inside that box to 

sample the data, as shown in Fig. 23. 

 

Figure 23:   Sampling points distribution (Erdem, 2020) 
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The points are calculated by dividing the box's height and width by 3. After obtaining all the 

points, Bilinear interpolation is applied to the sample data from this box. In image processing, 

bilinear interpolation is frequently employed to sample colors using the equation below:  

𝑃 ≈  
𝑦2 − 𝑦

𝑦2 − 𝑦1
(

𝑥2 − 𝑥

𝑥2 − 𝑥1
𝑄11 +  

𝑥 − 𝑥1

𝑥2 − 𝑥1
𝑄21) +

𝑦 − 𝑦1

𝑦2 − 𝑦1
(

𝑥2 − 𝑥

𝑥2 − 𝑥1
𝑄12 +

𝑥 − 𝑥1

𝑥2 − 𝑥1
𝑄22) 

Figure 24 shows the bilinear interpolation for the sampling points. 

  

(a) (b) 

 

 

(c) (d) 

Figure 24:   Bilinear interpolation for the (a) first point, (b) second point, (c) third point, 

and (d) fourth point (Erdem, 2020) 

Max Pooling is used once all the points have been determined, as shown in Fig. 25. 
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Figure 25:   Max Pooling on first box (Erdem, 2020) 

Data are pooled from the entire RoI using RoIAlign as illustrated in Fig. 26. 

 

Figure 26:   The RoIAlign pooling output (Erdem, 2020) 

Region of Interest Alignment pooling is applied for every layer until a result containing 512 

layers is obtained as feature map input, as seen in Fig. 27. In RoIAlign, using bilinear 

interpolation, data is extracted from all cells in the feature map inside the RoI even though 

sampling points are not placed in all cells (Erdem, 2020). 
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Figure 27:   The RoIAlign full size (Erdem, 2020) 

2.4.3 The U-Net Model for Semantic Segmentation 

Semantic segmentation assigns a class to each pixel in an image. It does not separate different 

instances of the same class. The U-Net model was used for semantic segmentation. The U-Net 

gains end-to-end image segmentation skills by receiving a raw image and producing a ready 

segmentation map (Ronneberger, 2015). The foundation of U-Net is a fully convolutional 

network (Long et al., 2015). The U-Net extends the fully convolutional network architecture 

to use a few annotated training images (relying excessively on the use of data augmentation) 

and still yields precise segmentations (Ronneberger et al., 2015). 

(i) The U-Net Model Architecture 

The U-Net is comprised of a large number of small operations, shown by small arrows, as 

illustrated in Fig. 28. Feature maps were represented in blue boxes. The left side of the U-

shaped U-Net architecture is known as the contracting path while the right side is the expansive 

path (Ronneberger et al., 2015).  
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Figure 28:   The U-Net architecture 

(ii) The U-Net Feature Extraction 

The contraction path on the right-hand side of the U-Net architecture follows a standard 

convolutional network. The feature extraction done in the convolutional network in the 

contracting path is discussed in the CNN feature extraction. The expansive path is made up of 

a series of up-convolutions. Up-convolutions are also referred to as transposed convolutions, 

which are used in up-sampling. The operations in a transposed convolution are similar to the 

operations in a normal convolution but go backward. This results in up-sampling an image 

from low resolution to high resolution. A convolutional operation produces a many-to-one 

relationship, i.e., the nine input matrix values are connected to one output matrix value for a 

3x3 convolutional filter. Figure 29 shows the many-to-one relationship produced by a 

convolution operation. A transposed convolution goes backward from the operation illustrated 

in Fig. 29. A transposed convolution connects one value in an input matrix to nine values in 

the output matrix for a 3x3 convolution filter. A transposed convolution gives a one-to-many 

relationship. Figure 30 shows the one-to-many relationship yielded by a transpose convolution 

as it does up-sampling. 
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Figure 29:   A convolutional operation yielding a many-to-one relationship 
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Figure 30:   A transpose convolution yielding a one-to-many relationship 

In Fig. 30, an attempt is made to up-sample a matrix of size 2x2 matrix to a matrix of size 4x4. 

The one-to-nine relationship is maintained. The transpose convolution operation done in Fig. 

30 can be explained by a convolution matrix and a transposed convolution matrix. 

A convolution matrix is a convolution filter that has been reorganized so that convolution 

operations can be produced through matrix multiplication. The 3x3 convolution filter (in red) 

in Fig. 29 and 30 is rearranged into a 4x16 convolution matrix by adding zero padding. Figure 

31 shows a 4x16 convolution matrix, while Fig. 32 illustrates how the convolution matrix is 

formed. 

1 4 1 0 1 4 3 0 3 3 1 0 0 0 0 0 

0 1 4 1 0 1 4 3 0 3 3 1 0 0 0 0 

0 0 0 0 1 4 1 0 1 4 3 0 3 3 1 0 

0 0 0 0 0 1 4 1 0 1 4 3 0 3 3 1 

Figure 31:   A 4x16 convolution matrix 
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Figure 32:   How a convolution matrix is formed 

The input matrix is flattened from 4x4 to a column vector of 16x1 to employ the convolution 

matrix, as seen in Fig. 33. 
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Figure 33:   Converting our input matrix from 4x4 to a column vector 16x1 

As shown in Fig. 34, a convolutional operation is created by multiplying the 16x1 input matrix 

by the 4x16 convolutional matrix. 
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Figure 34:   A convolution operation 

The output matrix in Fig. 34 can be transformed into a 2x2 matrix, producing the same outcome 

as in Fig. 29.  

When you transpose the convolution matrix (4x16) to create a (16x4) matrix, you acquire a 

matrix known as a transposed convolution matrix. You can use the convolution matrix to go 

from 16 (4x4) to 4 (2x2) because it is 4x16. Consequently, if you have a 16x4 transposed 

convolutional matrix, you can move from 4 (2x2) to 16 (4x4). A transposed convolutional 

matrix maintains the one-to-nine relationship as discussed before. Figure 35 illustrates the 

operation of a transposed convolution. Figure 35 also explains the transposed convolution 

X 
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operation that was given in Fig. 30. 
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Figure 35:   A transposed convolution operation 

To perform a transposed convolution, it is not necessary to begin with a normal convolution. 

The weight layout needs to be transposed from that of the convolution matrix (Naoki, 2017). 

2.5 Theoretical Literature Review 

This study used a theory called the technology acceptance model. This model’s selection was 

based on its ability to determine the attitude and behavioural intention of farmers to adopt and 

use our proposed product, for example, the farmers' perceptions of its usefulness and ease of 

X 
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usage (Venkatesh, 2000). This was covered in the validation of the mobile application in the 

field with the stakeholder groups. This study also used the theory of diffusion of innovation. 

The selection of this theory is based on its ability to determine the rate at which consumers will 

adopt a new product or service (Dearing, 2018). The summary of the adopted model is 

presented in Fig. 36. 

 

Figure 36:   Technology acceptance model (Lai, 2017) 

2.6 Empirical Literature Review 

This section discusses related works categorized into three categories which are feature 

extraction, using deep learning and machine learning to detect banana diseases, and mobile 

applications that deploy deep learning models for plant disease detection. 

2.6.1 Feature Extraction 

Bodapati and Veeranjaneyulu (2019) applied deep convolutional neural networks (DCNN) for 

image classification and feature extraction. In their study, Bodapati and Veeranjaneyulu (2019) 

performed two tasks: doing feature extraction using DCNN and then performing classification 

on the extracted features using support vector machines (SVM). The DCNN architecture had 

three convolutional and pooling layers which were followed by a fully connected output layer 

for feature extraction, and these features were fed into a two-hidden-layer neural network for 

classification in the first task. The results of their study showed that using u-SVM for 

classifying features extracted from DCNN yielded slightly better performance than using s 

neural network for classifying features extracted from DCNN. 

Zhu et al. (2017) proposed classification and target recognition for sonor images from 

unmanned underwater vehicles (UUVs) using deep learning feature extraction. Sonar image 

feature extraction was done using a convolutional neural network, whereby the features were 



33 
 

classified using an SVM that used manually labeled data for its training. Their study's findings 

demonstrated that deep learning feature extraction outperformed feature extraction from 

methods like the histogram of oriented gradients (HOG) and local binary pattern (LBP). 

2.6.2 Using Deep Learning and Machine Learning to Detect Banana Diseases 

Selvaraj et al. (2019) suggested an AI-based system that detects banana pests and diseases. The 

study used a large dataset of 30 952 annotated images. The images were gathered in southern 

India and Africa. The diseases incorporated in this study were Xanthomonas wilt, Bunchy top 

disease, Black Sigatoka, Fusarium wilt, Yellow Sigatoka, and Corm weevil. The model classes 

included each disease, dried or old leaves, and healthy plants. Detection models were built by 

training Faster R-CNN based on ResNet50 and InceptionV2 and an independent MobileNetV1 

convolutional neural network architecture using transfer learning. Six models were built from 

each architecture to represent diseases according to plant parts, utilizing images from various 

banana plant parts (including the corm, fruit bunch, leaves, cut fruit, pseudostem, and entire 

plant). This study showed that Faster R-CNN based on the InceptionV2 and ResNet50 models 

had better performance compared to the MobileNetV1 model. Faster R-CNN model based on 

ResNet50 on the pseudostem, leaves, fruit bunch, and entire plant performed better, with mean 

Average Precision (mAP) of 99%, 70%, 97%, and 73%, respectively. Despite the good 

performance, the study struggled with unbalanced data and was limited to a small number of 

images for Bunchy Top disease (902 images), Black Sigatoka disease (980 images), Yellow 

Sigatoka disease (1066 images), Fusarium Wilt disease (1726 images), and Corm Weevil 

disease (701 images). 

Bhuiyan et al. (2023) proposed a lightweight and fast convolutional neural network called the 

BananaSqueezeNet model for the diagnosis of Pestalotiopsis, Sigatoka, and Cordana banana 

diseases. This study used a dataset of 937 images collected in Bangladesh that consisted of the 

three banana diseases. The BananaSqueezeNet model achieved 96.25% accuracy, 96.25% 

recall, 96.53% precision, 96.17% F1-score, 98.75% specificity, and 95.13% MCC. Despite the 

good performance, the study used a small number of images. 

Narayanan et al. (2022) suggested the use of a hybrid convolutional neural network for the 

classification of banana diseases. The banana diseases addressed by this study are Black 

Sigatoka, banana bunchy top virus, Xanthomonas wilt, and Fusarium wilt. The study used a 

dataset of 3500 images of infected and healthy banana plants collected from fields in south 
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India. The study integrated CNN and FSVM, which combine multiclass and binary SVM to 

classify banana diseases. The proposed method achieved an accuracy of 99%. Despite the good 

performance, the study lacked a sufficient number of images to train the model. 

Amara et al. (2017) proposed an approach of deep learning using the LeNet architecture for 

the classification of banana leaf disease. This study used a dataset of 3700 annotated images 

belonging to the healthy, black speckle, and black sigatoka, classes. The study had several 

experiments based on different training to test set ratios which were evaluated using accuracy, 

F1-score, recall, and precision. For the 80:20 training-to-test ratio, the study achieved 92.88% 

accuracy, 92.99% precision, 92.88% recall, and a 92.94% F1 score for the colored images. 

Despite the good performance, this study was limited by a small number of black Sigatoka 

images which were only 240. 

Vidhya and Priya (2023) proposed the use of deep learning and machine learning for the 

classification of diseases of the banana leaf. The banana diseases addressed by this study are 

Sigatoka and Leafspot. The models proposed were SVM, KNN, and deep learning using 

Alexnet. The study used a dataset of colored images of diseased and healthy leaves of banana 

with or without a background. Data augmentation was performed on the image dataset. The 

study yielded accuracies for testing of 84.86% for SVM, 76.49% for KNN, and 96.73% for 

Alexnet. 

Similarly, Ramadhani (2017) developed a solution for predicting the presence of banana 

diseases and informing farmers so that they can prepare and be able to manage these diseases 

once they occur. The study used weather station data and an intelligent prediction algorithm 

(prediction based on weather conditions’ factors or features) in a mobile application to predict 

the occurrence of diseases and provide farmers with early warning so that the diseases could 

be managed. However, the developed approach was only limited to the area whose data were 

collected for prediction, in this case, the Arumeru District in the Arusha Region. Furthermore, 

the prediction accuracy was also limited by the accuracy and reliability of the data obtained 

from the weather stations.  

Moreover, Sanga et al. (2020) suggested early banana disease detection using a mobile 

application. The mobile application classifies the diseases using a deep learning model. The 

CNN architectures Inceptionv3 and Resnet152 were used. Inceptionv3 had an accuracy of 

95.41% while Resnet152 had an accuracy of 99.2%. There were 3000 images of banana leaves 
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of three classes in the dataset: Fusarium Wilt infected leaves healthy leaves, and Black Sigatoka 

infected leaves. The study had good performance for the developed models but it does not 

localize the areas in the banana leaf or stalk image that are affected by the diseases. 

2.6.3 Mobile Applications that deploy Deep Learning models for Plant Disease 

Detection 

Hui et al. (2021) proposed a mobile application that used a deep learning object detection model 

to detect grape diseases. The mobile application in this study used Faster R-CNN based on the 

Inception-v2 for efficient detection. The results showed that the application yielded an accuracy 

of 97.9% when tested on grape disease images while running on the device without a server 

connection. 

Nirmal et al. (2022) suggested a smart app that is farmer-friendly for pomegranate disease 

detection. The study’s goal was to use leaf images to automate the disease detection system. 

The study’s dataset was built using Mendeley data and included images of healthy and diseased 

pomegranate leaves. The study process included image data collection, image pre-processing, 

classification, and deployment. The deep learning models used for classification were AlexNet 

and VGG-16. The study showed that AlexNet was more efficient in detecting pomegranate leaf 

disease, and it was therefore deployed in a mobile application. The mobile application would 

help farmers detect pomegranate disease without the assistance of specialists. 

Loyani and Machuve (2021) suggested a mobile application that employs deep learning to 

segment Tuta absolouta’s effect on tomatoes. This study deployed a segmentation model that 

was trained on a dataset of images of tomato leaves in a mobile application. The mobile 

application is used for the early and real-time detection of tuta pests in the early stages of the 

growth of tomatoes. With 70% minimum confidence and a 5-second time frame, the application 

was able to identify and segment tuta absoluta-infected patches on tomato leaves. 

2.7 Research Gap 

Some of the related works used a small number of images to train their deep learning models 

and to the best of the author's knowledge, none of the literature reviewed addressed the 

segmentation of Black Sigatoka and Fusarium Wilt banana diseases. This study uses an image 

segmentation technique with a large dataset. The dataset includes banana leaf and stalk images 

categorized into healthy banana leaves, banana leaves infected by Black Sigatoka disease, and 
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banana leaf and stalk images infected by Fusarium Wilt disease collected from the field. The 

dataset was used to develop a deep learning model for the early identification of Fusarium wilt 

and Black Sigatoka diseases. The advantage of applying deep learning techniques to identify 

diseases in plants as compared to other approaches, such as the one proposed by Ramadhani 

(2017), is that a large number of images of plant leaves infected by the diseases are used to 

train the deep learning models. The model learns from the disease symptoms features shown 

from the image of the leaf. As long as the disease symptoms are the same or similar (which is 

the case most of the time), the model detects a disease from a new image with very high 

accuracy without considering the place in which the image of the plant leaf was taken. 

The image segmentation technique has many advantages over other deep learning techniques, 

such as classification methods. This technique can localize the infected area on the plant leaf 

image by creating a mask around it. Through this localization, the image segmentation 

technique shows the precise place on the leaf that is infected. If the image has multiple objects, 

image segmentation can describe each object in the image, while classification can only 

describe the whole image as one object of interest.  

The best deep learning model was deployed in a mobile application to enhance its use by 

farmers. The farmers will use the application to identify Fusarium Wilt and Black Sigatoka 

diseases in the early stages. In addition, the mobile application also provides recommendations 

for mitigating these diseases recommended by researchers so that farmers can be aware of them 

and prevent the further spreading of the disease and rescue their yields. 
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Study Area and Scope of the Research 

The study area and scope of this research consist of the areas where the data used in this 

research was collected. Images of both diseased and healthy banana plants were collected in 

the Arusha, Kilimanjaro, Kagera, Mbeya, and Dar es Salaam regions of Tanzania. The selection 

of these areas was based on banana availability and disease prevalence. 

3.2 Data Collection 

A dataset of 30 640 banana leaf and stalk images was collected from the fields. Data was 

gathered using the Open Data Kit (ODK) tool called Adsurv, which was installed on a 

smartphone. Banana leaves and stalks were captured using a smartphone camera. A Samsung 

SM-A715F/DS phone camera was used to collect the dataset with normal settings. The data 

collection exercise involved farmers, researchers, agricultural experts, and plant pathologists. 

The dataset was collected on banana farms with healthy banana plants, some banana plants 

affected by Black Sigatoka disease, and some banana plants affected by Fusarium Wilt disease. 

To train the model with images of different qualities, images of various resolutions were 

obtained. The model was intended to be used in the field, where it is anticipated that 

smallholder farmers will use inexpensive phones with low quality, the model was trained using 

both low and high-resolution photos. The images were collected by taking a picture close to 

the banana leaf as seen in Fig. 37. To support further research in detecting and segmenting 

Fusarium Wilt and Black Sigatoka banana diseases, the dataset used in this work is freely 

available in an open-access repository, and more information about the dataset is reported by 

Mduma and Leo (2023).  
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Figure 37:   Data collection in the field 

The dataset had three classes: images of healthy banana leaves, images of Black Sigatoka 

infected banana leaves, and images of Fusarium Wilt infected banana leaves and stalks as 

summarized in Table 1. Figure 38 shows sample images of a healthy banana leaf, a Black 

Sigatoka infected banana leaf, and a Fusarium Wilt infected banana leaf and stalk. 

     

Healthy Black Sigatoka Fusarium Wilt 

Figure 38:   Examples of images from the dataset 
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Table 1:     Total number of data collected 

Banana Images Number of images collected 

Healthy Leaves 9779 

Black Sigatoka infected leaves 10 137 

Fusarium Wilt infected leaves and stalks 10 724 

Total 30 640 

3.3 Data Preprocessing 

Data pre-processing is a crucial step that helps a deep learning model learn and extract features 

from an image during model training. Data pre-processing in this work included cropping, data 

cleaning, renaming, and data annotation. 

3.3.1 Data Cleaning and Cropping 

The image dataset was manually cropped to remove the background and unwanted items and 

focus on the banana leaf or stalk. Removing duplicates was done to clean the banana images 

dataset. VisiPics and Duplicate Photo Finder are free software programs that were used to 

remove 3280 duplicates from the images as summarized in Table 2. This software program was 

used because it is open-source and easy to use. In VisiPics, strictly similar (or identical) images 

were removed as seen in Fig. 39. In Duplicate Photo Finder, images were searched against the 

“same picture” filter. 

Table 2:     A summary of removing duplicates 

Banana Images Before 

Removing 

Duplicates 

After 

Removing 

Duplicates 

Duplicates 

found and 

deleted 

Healthy Leaves 9779 9120 659 

Black Sigatoka infected leaves 10 137 9120 1017 

Fusarium Wilt infected leaves and stalks 10 724 9120 1604 

Total 30 640 27 360 3280 
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Figure 39:   How VisiPics was used to detect and delete duplicates 

3.3.2 Data Renaming 

For simplicity, the clean images in each class were renamed to comprise image numbers. For 

example, for healthy images, the first one was HEALTHY_1.jpg, and the numbers kept on 

increasing to HEALTHY_9120.jpg. Bulk Rename Utility software, was used to rename images 

for all classes as shown in Fig. 40. This tool was used because it is open-source and simple to 

use. 

 

Figure 40:   How Bulk Rename Utility was used to rename images in the dataset 
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3.3.3 Data Annotation 

Image segmentation algorithms require images to have masks around the regions of interest 

with labels in training and validation to obtain accurate predictions of these regions of interest. 

The 27 360 images for all classes were annotated for the image segmentation task. LabelMe, 

which is open-source software, was used to annotate the images that were used in instance and 

semantic segmentation by Mask R-CNN and U-Net models, respectively. The specific 

procedure was to manually draw a mask around the regions of interest in the banana plant 

image using irregular polygons and then label them with the class name. For example, for 

banana leaf images affected by Black Sigatoka disease, an irregular polygon was drawn around 

each spot showing the damage of the disease on the leaf, and each polygon was given the label 

"Black Sigatoka". The irregular polygons drawn around the spots that showed the damage of 

Fusarium Wilt disease on banana leaves and stalks were given the label "fusarium wilt".  

For the healthy banana leaves, an irregular polygon was drawn around the whole leaf area in 

the image, and the polygons were given the label "healthy". During annotation, the dataset had 

at least one irregular polygon for each image. Each image file had its corresponding annotation 

file in the same folder with the same name except for the extension. LabelMe saves its 

annotations in JSON format which were converted into PNG format annotations used in the U-

Net model for semantic segmentation. Figure 41 shows how the dataset was annotated using 

LabelMe software. The outputs of the image annotation process are illustrated in Fig. 42. 

   

(a) (b) (c) 

Figure 41:   How LabelMe was used to manually annotate images (a) Annotation of a 

healthy banana leaf image; (b) Annotation of a banana leaf image affected 

by Black Sigatoka disease; and (c) Annotation of a banana stalk image 

affected by Fusarium Wilt disease 



42 
 

     

(a) (b) (c) (d) (e) 

Figure 42:   The Image annotation outputs (a) Original image (b) Drawing a polygon 

around the area on a leaf image affected by Black Sigatoka (c) Saving the 

annotation in JSON format (d) Visualizations of the labels (e) Extraction of 

the mask in PNG format 

3.4 Research Framework 

The research framework in Fig. 43 provides a comprehensive explanation of how this study 

was conducted. A dataset comprising images of banana leaves and stalks was collected from 

the field. This was followed by image preprocessing, then model development and validation. 

For instance, segmentation, the Mask R-CNN model was created, and for semantic 

segmentation, the U-Net model was. The mobile application deployed the best-optimized 

model. The mobile application was validated in the field to see how well it worked. The mobile 

application will be used by farmers and agricultural experts for the early identification of 

banana diseases. The application also provides farmers with information concerning banana 

diseases, and after disease detection, the application recommends to farmers initiatives to 

undertake (like fungicides to use) to rescue their yields. 

 

Figure 43:   The research framework 
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3.5 Classification with Convolutional Neural Network Model 

A basic CNN model was incorporated to classify banana plants and their diseases because the 

CNN architecture is used as the foundation of the Mask R-CNN and the U-Net models. The 

CNN model was built from scratch without using transfer learning. 

3.5.1 Convolutional Neural Network Model Hyper-Parameters Tuning 

In implementing the CNN model, a sequential model was used. The model contained four 

convolutional layers, each followed by a max pooling layer, then followed by a dropout layer 

with a rate of 0.2. The first and second convolutional layers had 16 and 32 filters while the 

third and fourth each had 64 filters. Each convolutional layer used the ReLu activation function, 

and all convolutional filters were 3×3 in size. These were followed by a flattened layer, which 

was followed by a dense layer with 512 neurons with the ReLu activation function. The output 

dense layer had four neurons, which was the number of our classes, and had a softmax 

activation function. Images were rescaled to normalize them by 1/255 to a range of zero to one 

and resized to 512x512 pixels. The CNN model used several hyperparameters as summarized 

in Table 3. 

Table 3:     The CNN model training hyperparameters 

Parameters Value(s) 

Batch size 32 

Epoch 100 

Optimizer Adam (Learning rate = 0.001) 

Loss Categorical Crossentropy 

Metric Accuracy, Precision, Recall, and F-measure 

3.5.2 The CNN Model Classes and Data Grouping During Training  

The CNN model had four classes, which are "Black Sigatoka", "Fusarium Wilt", "Healthy", 

and an extra class called "Not Banana". The extra class comprised images of other things apart 

from a banana leaf or stalk. This extra class of "Not Banana" was included to enable the CNN 

model to predict images of other things. Without this extra class, if, for example, a picture of 

the sky was introduced to the CNN model to be predicted, it would be predicted as either Black 

Sigatoka, Fusarium Wilt, or Healthy. But when the extra class is introduced to the CNN model 
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during training, the model will predict an image of the sky as "Not Banana". The dataset for 

this extra class was collected from the internet. The model was trained in groups, where the 

output weights that were used to train the first group were used as input for training the second 

group, and so on.  

The CNN model was trained in groups because of the large dataset. The entire dataset was 

divided into five groups, where the first four groups had 2000 images for each of the Black 

Sigatoka, Fusarium Wilt, and Healthy classes and 407 images for the Not Banana class. The 

fifth group had 1120 images for each of the Black Sigatoka, Fusarium Wilt, and Healthy classes 

and 407 images for the Not Banana class. Eighty percent of the images in each group were used 

for training and 20% for validation. Table 4 shows the data distribution for the CNN model. 

Appendix 5 shows the CNN model source code. 
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Table 4:     Data distribution for the CNN model 

Group Banana Images Training 

Set 

Validation 

Set 

Total 

Images 

Group 1 

Healthy banana leaves 1600 400 

6407 

Black Sigatoka infected banana leaves 1600 400 

Fusarium Wilt infected banana leaves 

and stalks 

1600 400 

Not banana leaves or stalk 326 81 

Group 1 Total 5126 1218 

Group 2 

Healthy banana leaves 1600 400 

6407 

Black Sigatoka infected banana leaves 1600 400 

Fusarium Wilt infected banana leaves 

and stalks 

1600 400 

Not banana leaves or stalk 326 81 

Group 2 Total 5126 1218 

Group 3 

Healthy banana leaves 1600 400 

6407 

Black Sigatoka infected banana leaves 1600 400 

Fusarium Wilt infected banana leaves 

and stalks 

1600 400 

Not banana leaves or stalk 326 81 

Group 3 Total 5126 1218 

Group 4 

Healthy banana leaves 1600 400 

6407 

Black Sigatoka infected banana leaves 1600 400 

Fusarium Wilt infected banana leaves 

and stalks 

1600 400 

Not banana leaves or stalk 326 81 

Group 4 Total 5126 1218 

Group 5 

Healthy banana leaves 896 224 

3767 

Black Sigatoka infected banana leaves 896 224 

Fusarium Wilt infected banana leaves 

and stalks 

896 224 

Not banana leaves or stalk 326 81 

Group 5 Total 3014 753 

Total 23 518 5877 29 395 

 



46 
 

3.6 Transfer Learning 

Transfer learning is a method where a model created for one job is utilized as a foundation for 

another model created for a similar but distinct activity. In the Mask R-CNN model, transfer 

learning is applied through the latest Mask R-CNN trained weights from the COCO dataset. 

U-Net was trained and yielded the best performance in several International Symposium on 

Biomedical Imaging (ISBI) challenges (Ronneberger et al., 2015) in semantic segmentation. 

3.7 Mask Region-Based Convolutional Neutral Network Model Hyper-Parameter 

Tuning 

The Mask R-CNN model used several hyperparameters as summarized in Table 5, for feature 

extraction and model training. Appendix 3 shows the Mask R-CNN model source code. 
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Table 5:     Mask R-CNN model training hyperparameters 

Parameters Value(s) 

Backbone ResNet50 or ResNet101 

Backbone Strides [4, 8, 16, 32, 64] 

Batch Size 1 

Detection Maximum Instances 100 

Detection Minimum Confidence 0.7 

Detection NMS Threshold 0.3 

GPU Count 1 

Images per GPU 1 

Image Maximum Dimension 896 

Image Minimum Dimension 896 

Image Resize Mode square 

Image Shape [896 896   3] 

Learning Momentum 0.9 

Learning Rate 0.001 

Loss Weights 

{'rpn_class_loss': 1.0, 

'rpn_bbox_loss': 1.0, 

'mrcnn_class_loss': 1.0, 

'mrcnn_bbox_loss': 1.0, 

'mrcnn_mask_loss': 1.0} 

Mask Shape [28, 28] 

Number of Classes 4 

RPN Anchor Scales (8, 16, 64, 128, 256) 

RPN Anchor Stride 1 

RPN NMS Threshold 0.7 

Steps Per Epoch 150 

Validation Steps 30 

Weight decay 0.0001 

Epoch 50 
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3.8 The U-Net Model 

3.8.1 The U-Net Model Hyper-Parameter Tuning 

A custom U-Net model was used whereby its initial layer had 32 convolutional filters. Every 

layer in the contraction path resulted in a doubling of this number of filters. The number of 

layers in the contraction path was set to 4. The images were scaled to a range of zero to one 

and resized to 512×512 pixels. The training dataset size was increased by using data 

augmentation. The data argumentation techniques applied included a rotation of 5.0 degrees, a 

height and width shift range of 0.05, a shear range of 40, a zoom range of 0.2, vertical and 

horizontal flipping, and a fill mode of constant. Data augmentation was applied equally to both 

images and their annotations. The U-Net model experiment used 200 epochs, an SGD 

activation function, an IoU threshold for a minimum detection probability of 0.5, and a learning 

rate of 0.01. 

3.8.2 The U-Net Model Classes and Data Grouping During Training 

In training the U-Net model, two classes were used, which are Black Sigatoka and Fusarium 

Wilt images. The U-Net model used image masks which were in PNG format. Therefore, each 

JPG image had its own corresponding PNG mask. The U-Net model was trained in groups 

because of the large dataset and very high computing time, especially when resizing and 

converting each image and its mask into NumPy array values. When we tried to train the model 

with the entire dataset the process of converting the images and their corresponding masks into 

NumPy arrays (so that they could be used to train the model) was not reaching an end (because 

of the huge number of images) hence we could not reach the stage of training the model. This 

caused the dataset in the U-Net model to be divided into 25 groups to handle a small number 

of images at a time. The first 12 had 500 images together with their corresponding masks for 

each of Black Sigatoka and Fusarium Wilt. Groups 13 to 24 had 250 images together with their 

corresponding masks for each Black Sigatoka and Fusarium Wilt. Group 25 had 120 images 

together with their corresponding masks for each of Black Sigatoka and Fusarium Wilt. Eighty 

percent of the images in each group were used for training and 20% for validation in a random 

split.  

The output trained weight from the first group was used as the input weight for training the 

second group and so on. Unfortunately, due to the long time required during the annotation 

process, an extra class could not be added to be able to segment other plants or things that are 
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not images of the banana plant. Table 6 shows the data distribution for each group for the U-

NET model. Appendix 4 shows the U-Net model source code. 

Table 6:     Data distribution for the U-NET model 

Group Banana Images Number of 

Images 

Total 

Images 

Training 

set 

Validation 

set 

Group 1 

Black Sigatoka infected leaves 500 

1000 800 200 
Fusarium Wilt infected leaves 

and stalks 
500 

Group 2 

Black Sigatoka infected leaves 500 

1000 800 200 
Fusarium Wilt infected leaves 

and stalks 
500 

Group 3 

Black Sigatoka infected leaves 500 

1000 800 200 
Fusarium Wilt infected leaves 

and stalks 
500 

Group 4 

Black Sigatoka infected leaves 500 

1000 800 200 
Fusarium Wilt infected leaves 

and stalks 
500 

Group 5 

Black Sigatoka infected leaves 500 

1000 800 200 
Fusarium Wilt infected leaves 

and stalks 
500 

Group 6 

Black Sigatoka infected leaves 500 

1000 800 200 
Fusarium Wilt infected leaves 

and stalks 
500 

Group 7 

Black Sigatoka infected leaves 500 

1000 800 200 
Fusarium Wilt infected leaves 

and stalks 
500 

Group 8 

Black Sigatoka infected leaves 500 

1000 800 200 
Fusarium Wilt infected leaves 

and stalks 
500 

Group 9 Black Sigatoka infected leaves 500 1000 800 200 
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Fusarium Wilt infected leaves 

and stalks 
500 

Group Banana Images Number of 

Images 

Total 

Images 

Training 

set 

Validation 

set 

Group 10 

Black Sigatoka infected leaves 500 

1000 800 200 
Fusarium Wilt infected leaves 

and stalks 
500 

Group 11 

Black Sigatoka infected leaves 500 

1000 800 200 
Fusarium Wilt infected leaves 

and stalks 
500 

Group 12 

Black Sigatoka infected leaves 500 

1000 800 200 
Fusarium Wilt infected leaves 

and stalks 
500 

Group 13 

Black Sigatoka infected leaves 250 

500 400 100 
Fusarium Wilt infected leaves 

and stalks 
250 

Group 14 

Black Sigatoka infected leaves 250 

500 400 100 
Fusarium Wilt infected leaves 

and stalks 
250 

Group 15 

Black Sigatoka infected leaves 250 

500 400 100 
Fusarium Wilt infected leaves 

and stalks 
250 

Group 16 

Black Sigatoka infected leaves 250 

500 400 100 
Fusarium Wilt infected leaves 

and stalks 
250 

Group 17 

Black Sigatoka infected leaves 250 

500 400 100 
Fusarium Wilt infected leaves 

and stalks 
250 

Group 18 Black Sigatoka infected leaves 250 500 400 100 
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Fusarium Wilt infected leaves 

and stalks 
250 

Group Banana Images Number of 

Images 

Total 

Images 

Training 

set 

Validation 

set 

Group 19 

Black Sigatoka infected leaves 250 

500 400 100 
Fusarium Wilt infected leaves 

and stalks 
250 

Group 20 

Black Sigatoka infected leaves 250 

500 400 100 
Fusarium Wilt infected leaves 

and stalks 
250 

Group 21 

Black Sigatoka infected leaves 250 

500 400 100 
Fusarium Wilt infected leaves 

and stalks 
250 

Group 22 

Black Sigatoka infected leaves 250 

500 400 100 
Fusarium Wilt infected leaves 

and stalks 
250 

Group 23 

Black Sigatoka infected leaves 250 

500 400 100 
Fusarium Wilt infected leaves 

and stalks 
250 

Group 24 

Black Sigatoka infected leaves 250 

500 400 100 
Fusarium Wilt infected leaves 

and stalks 
250 

Group 25 

Black Sigatoka infected leaves 120 

240 192 48 
Fusarium Wilt infected leaves 

and stalks 
120 

Total 18 240 18 240 14 592 3648 

3.9 Experiment Setting 

The experiments were done on a PC with Windows 11 Pro and one Intel(R) Core (TM) i5-

8250U CPU @ 1.60GHz 1.80 GHz, with 8GB of RAM. The notebook was run on Google 

Colab Pro Plus with a Tesla T4 GPU and 54.8GB of RAM. Python 3 and the TensorFlow 

backend were used to implement the network. 
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3.10 Evaluation 

Deep learning models are assessed by evaluating how successfully the learned model 

generalizes to previously unexplored data. A deep learning model's performance is measured 

using a variety of evaluation metrics. Different deep-learning tasks, including classification, 

localization, and others, are evaluated using different evaluation metrics. The CNN model’s 

performance was evaluated using accuracy, f-measure, recall, and precision. Mean Average 

Precision (mAP), Dice Coefficient, and Intersection over Union were used to assess the 

effectiveness of the instance (Mask R-CNN) and semantic (U-Net) segmentation models. The 

following definitions apply to these evaluation metrics: 

3.10.1 Accuracy 

One of the evaluation metrics for classification model evaluation is accuracy. According to 

Equation 1, accuracy is calculated as the number of accurate classification predictions divided 

by the total number of predictions: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠+𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (1) 

3.10.2 Recall 

The question that recalls answers is: What proportion of actual positives was identified 

correctly? Recall tells the percentage of predictions the model correctly identified as the 

positive class when ground truth was the positive class. A model has a recall of 1.0 if it does 

not have false negatives. Recall can be defined as seen in Equation 2: 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2) 

Where: 

TP (True Positives): is the number of positive samples correctly predicted. 

FN (false Negatives) is the number of positive samples that are wrongly predicted as negative. 

3.10.3 Precision 

The question that precision answers is: What proportion of positive identifications were 

actually correct? Precision tells the percentage of correct predictions when the model predicts 
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a positive class. A model has a precision of 1.0 if it does not have false positives. Precision can 

be defined as seen in Equation 3. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3) 

Where: 

TP (True Positives): the number of positive samples correctly predicted. 

FP (false Positives): the number of negative samples that are wrongly predicted as positive. 

3.10.4 The F-Measure 

The computation of the harmonic mean of recall and precision, assigning equal weights to 

each, is called the F-measure. The F-measure gives the best precision and recall at the same 

time. This allows for the accounting of both precision and recall in a single score, allowing for 

the comparison of models and the description of a model's performance. The F-measure can be 

calculated using the formula in Equation 4. 

 𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (4) 

3.10.5 Mean Average Precision (mAP) 

The average precisions for every class over all classes are given by the Mean Average Precision 

(mAP). It is used as the key evaluation metric to assess how well the model segmented the data. 

Mean Average Precision (mAP) is computed by the formula in Equation 5. 

 𝑚𝐴𝑃 =  
1

𝑁
∑ 𝐴𝑃𝑖

𝑁
𝑖=1  (5) 

Where: 

𝑚𝐴𝑃 is the mean Average Precision of all classes. 

𝐴𝑃𝑖 is the Average Precision. 

∑ 𝐴𝑃𝑖
𝑁
𝑖=1  is the sum of Average Precision values. 

N is the number of all classes. 
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Average Precision is the area under the Precision-Recall (PR) curve. The Precision-Recall 

curve depicts the tradeoff between precision and recall for various thresholds. While high recall 

is associated with a low false negative rate, high precision is associated with a low false positive 

rate. High recall and precision are both indicated by a high area under the curve. High scores 

for both show that the classifier is generating accurate (high precision) and largely positive 

(high recall) results. In the Precision-Recall (PR) curve, precision is the y-axis and recall are 

the x-axis. Setting an IoU threshold value yields several precision-recall value pairs, which are 

then used to plot the graph. Any detection that has an IoU value below the predetermined 

threshold is classified as a false positive or true positive otherwise. The precision-recall graph 

is created by computing the precision and recall at each detection, then sorting the results by 

the threshold and traversing through all precision-recall value pairings. 

3.10.6 Intersection Over Union  

A number called Intersection Over Union (IoU) evaluates how much two boxes or masks 

overlap. In the context of object detection and image segmentation, IoU evaluates the overlap 

between the Ground Truth and Prediction region. In image segmentation, IoU is the main 

metric that evaluates the accuracy of a model. The IoU is the overlapping area (the point where 

the predicted mask and the ground truth mask meet) over the union area (where the predicted 

mask and the ground truth mask are joined). When the IoU exceeds a predetermined threshold, 

the prediction is said to be True Positive (TP), and when it falls short of that threshold, it is said 

to be False Positive (FP). The Intersection over Union (IoU) is given by the formula in Equation 

6. 

 𝐼𝑜𝑈 =  
𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝐴𝑟𝑒𝑎 

𝑈𝑛𝑖𝑜𝑛 𝐴𝑟𝑒𝑎
 (6) 

Intersection over Union (IoU) varies in the range of zero to one, with zero signifying that 

between the masks there is no overlap and one signifying that between the masks there is 

perfect overlap, i.e., a perfect prediction. 
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3.10.7 Dice Coefficient 

The Dice coefficient is a spatial overlap index and a reproducibility validation metric. The 

overlap between the predicted mask and the actual mask is measured by the dice coefficient. 

Its value ranges from zero, which means no spatial overlap between ground truth and predicted 

mask, to one, which means complete overlap. The dice coefficient is 2 * the area of overlap 

divided by the total number of pixels in both images. The dice coefficient is defined as seen in 

Equation 7. 

 𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
2∗𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝐴𝑟𝑒𝑎

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑏𝑜𝑡ℎ 𝑖𝑚𝑎𝑔𝑒𝑠
=  

2∗ 

 

 (7) 

3.10.8 Loss Function 

Loss is a measure of how poorly the model predicted a single example. Loss is a number given 

by a loss function. The goal of a model is to minimize the loss function. The loss value is one 

of the guides to inform us on whether to continue with hyperparameter tuning to improve the 

model’s performance. A model with good performance will have a small loss number.  

(i) Mask R-CNN Loss Function 

Mask R-CNN combines different losses for each sampled region of interest into one multi-task 

loss. The loss used by Mask R-CNN sums up the losses from classification, bounding box, and 

mask prediction. The bounding box and classification losses used by Mask R-CNN originate 

from Faster R-CNN. The mask branch contains a Km2 dimensional output for every region of 

interest that encodes K binary masks of resolution m*m, one for every K class. A per-pixel 

sigmoid is applied to this, and a mask loss is defined as the average binary cross-entropy loss. 

A per-pixel sigmoid and a binary loss allow the network to generate masks for each class 

without competition among classes. The Mask R-CNN loss is defined as seen in Equation 8. 

 𝐿 = 𝐿𝑐𝑙𝑠 + 𝐿𝑏𝑜𝑥 + 𝐿𝑚𝑎𝑠𝑘 (8) 

Where: 

𝐿𝑐𝑙𝑠 is the classification loss. 
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𝐿𝑏𝑜𝑥 is the bounding-box loss. 

𝐿𝑚𝑎𝑠𝑘 is the mask loss. 

(ii) The U-Net Loss Function 

Ronneberger et al. (2015) state that “The energy function is computed by a pixel-wise soft-

max over the final feature map combined with the cross-entropy loss function.” In other words, 

the cross-entropy loss function is applied after pixel-by-pixel softmax on the U-Net's output 

feature map. As a result, the segmentation problem is transformed into a multiclass 

classification problem and each pixel is given to a certain class. When using a weighted loss, 

U-Net gives background labels that separate touching items a lot of weight. The loss weighting 

scheme helps U-Net distinguish touching objects of the same class. Hence, U-Net can separate 

individual spots of Black Sigatoka within a binary segmentation map. 

3.11 Model Deployment 

Model deployment is the procedure of putting the deep learning model into use so that it may 

be used to make predictions or find patterns using data. A deep learning model can be deployed 

in an embedded Internet of Things system, a web application, or a mobile application. The 

image segmentation model was deployed in a mobile application so that it could be accessed 

and used by agricultural extension officers and farmers to detect banana diseases at an early 

stage. Also, the developed mobile application provides recommendations to users so that they 

can be aware of what measures to be taken to mitigate the situation. 

Deep learning models are resource-intensive. They require a lot of memory and storage 

capacity to run. To meet the resource limitations in a mobile phone environment, the 

TensorFlow Lite framework was utilized to transform the model into a mobile readable format. 

TensorFlow Lite is a collection of tools created to suit all the requirements of embedded and 

mobile systems for deployment. Some of the constraints addressed by TensorFlow Lite are 

battery consumption, low latency, lightweightness, and an efficient model format. TensorFlow 

Lite is not designed to be a framework for training models; the model is trained in TensorFlow 

instead. A TensorFlow model was converted into TensorFlow Lite format by a converter that 

shrinks and optimizes the model, which was then loaded and run using a TensorFlow Lite 

interpreter. Figure 44 illustrates the TensorFlow Lite suite. 



57 
 

 

Figure 44:   The TensorFlow Lite suite (Moroney, 2021) 

The other option was to deploy a normal TensorFlow model on a web server and create an 

Application Programming Interface (API) to be used to access the model from the mobile 

application through a Uniform Resource Locator (URL).   

The CNN deep learning model was deployed in a mobile application after being translated to 

TensorFlow Lite format. However, the use of a compressed TensorFlow Lite format model 

proved to be less efficient because the ability of the model to detect diseased and healthy banana 

leaves and stalks was reduced tremendously. The original TensorFlow model could detect or 

predict more accurately than when it was converted to TensorFlow Lite. As a result of this, the 

study opted to deploy the original TensorFlow model on a web server and create an API to 

access this model from the mobile application. Appendix 6 shows the Model deployment 

Flutter Source code. 

3.11.1 Requirements Elicitation and Analysis 

This section discusses the services that will be provided by the mobile application. To achieve 

the specific objective of developing an image segmentation deep learning model for the early 

detection of banana plant diseases, the requirement was to collect images of banana leaves that 

were healthy, Black Sigatoka infected banana leaves, and Fusarium Wilt infected banana leaves 

and stalks. The requirements for the development of the mobile application were obtained by 

interviewing the stakeholders, including prospective users, which are farmers, agricultural 

extension officers, and other agricultural and technical experts. Appendix 1 shows the 

questions that were asked to these people. Six people were involved in this process. 

(i) Functional Requirements 

The services offered by the mobile application are included in the Functional requirements. 
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They include the relationship between input and output. Table 7 describes the functional 

requirements that were identified for the developed mobile application. 

Table 7:     The mobile application’s functional requirements and their description 

Functional 

Requirement 

ID 

Functional 

Requirement Name 

Functional Requirement Description 

1 Capture an image The application should allow farmers and 

extension officers to take a picture of a banana 

plant through the mobile phone camera. 

2 Upload an image The application should allow farmers and 

extension officers to upload an image of a banana 

plant from the phone’s gallery. 

3 Display image The application should allow farmers and 

extension officers to display the captured or 

uploaded image. 

4 CNN model runs 

inference 

The application should deploy an image 

classification deep learning model and allow 

farmers and extension officers to run inference in 

the background on the displayed image in the 

application to detect whether the banana leaf or 

stalk is healthy or is affected by either Fusarium 

Wilt or Black Sigatoka banana diseases. 

5 View detection results The application should allow farmers and 

extension officers to view detection results from 

the mobile application after detecting a disease. 

6 View mitigation 

recommendations 

The application should allow farmers and 

extension officers to view the mitigation 

recommendations against the banana diseases 

detected in the mobile application. 

7 View banana 

information 

The application should allow farmers and 

extension officers to view general information 

about banana farming, including: 

a) different types of bananas,  

b) the banana types that provide the highest 

yields, 

c) the banana types that have high demand in 

the market, and 

d) the best practices in banana farming. 
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Functional 

Requirement 

ID 

Functional 

Requirement Name 

Functional Requirement Description 

8 View disease 

information 

The application should allow farmers and 

extension officers to view general information 

about Fusarium Wilt and Black Sigatoka banana 

diseases. This includes: 

a) their causes,  

b) symptoms,  

c) transmission mechanism, and  

d) mitigation strategy. 

a. Including how to eradicate sick 

banana plants without spreading the 

disease further. 

9 Change language The application should include English and 

Swahili languages and allow farmers and 

extension officers to choose which language they 

prefer for the application. 

10 Update/Patch the 

application 

The application should receive its updates and 

patches from a web-based backend system that will 

allow the administrator to manage it. 

(ii) Non-functional Requirements 

Non-functional requirements outline the characteristics or standards used to evaluate the 

system's performance. How efficiently the system operates can enhance the system’s 

functionality. Table 8 describes the non-functional requirements that were identified for the 

mobile application. 
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Table 8:     Non-functional requirements for the mobile application and their description 

Non-

functional 

Requirement 

ID 

Non-functional 

Requirement Name 

Non-functional Requirement Description 

1 Availability The application and the deep learning model 

should be available all the time for the farmers to 

use. 

2 Reliability The application should be able to accurately detect 

healthy banana plants and banana plants affected 

by either Fusarium Wilt or Black Sigatoka 

diseases, given an image of a banana leaf or stalk. 

3 Performance The application should have low latency in 

performing inference and displaying detection 

results. 

4 Usability The application should be intuitive and easy to use 

without any need for guidance. 

5 Compatibility The application should be accessible to mobile 

phones running on Android operating systems. 

3.11.2 System Design 

System design defines the system elements, including modules, architecture, system 

components, and their interfaces, as well as their data. Several design models for the 

recommended mobile application are included. These are the use case diagram, activity 

diagram, and sequence diagram. 

(i) Use Case Diagram 

A use-case diagram shows the activities that are accomplished by the users of the system. It 

comprises the use cases or discrete tasks, the actors or users of the system, and the relationship 

between them. Figure 45 shows the use case diagram for the banana disease detection mobile 

application. 
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Figure 45:   Use case diagram for the banana diseases detection mobile application 

(ii) Activity Diagram 

An activity diagram is used in business process modelling. It depicts the processes that a user 

of the mobile application can go through, from the beginning when the user launches the 

application to when the user achieves their goal and closes their application. Figure 46 

illustrates the activity diagram for the mobile application for banana disease detection. 
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Figure 46:   Activity diagram for the banana diseases detection mobile application 

(iii) Sequence Diagram 

The interaction between the actors and the objects in a system is modelled using a sequence 

diagram. It depicts the interactions happening in a particular use case or use case instance. 

Figure 47 illustrates a sequence diagram for the capture/upload image use case. 

 

Figure 47:   Sequence diagram for the capture/upload image use case 
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3.11.3 System Development Methodology 

This study used the agile method using extreme programming (XP) for developing the mobile 

application. Agile methodology was adopted because it accelerates software delivery and 

enhances the ability to manage changing priorities. Extreme programming (XP) allows the 

development of software in small iterations, whereby each iteration can be tested against 

customer user stories, and user feedback in acceptance testing helps to determine the readiness 

of the software for release or needs more iterations. 

3.11.4 Technologies Used 

The Flutter framework which uses the Dart language was used in the Android Studio IDE to 

develop the mobile application. The image classification deep learning model was trained using 

TensorFlow in the Google Colab Pro computing environment. The conversion of the model 

into a lighter version (mobile phone-compatible) using TensorFlow Lite was done. A Samsung 

SM-A715F/DS was used in testing the mobile application. The Flask framework was used to 

develop an API to access the TensorFlow model from the mobile application. 

3.12 Validation of the Performance of the Developed Mobile Application 

Validation or user acceptance testing of the mobile application was done by using the 

requirements of the mobile application and testing if they were met. Questions were formulated 

about the requirements, and the users were required to either answer Yes or No. Appendix 2 

presents the questionnaire that was used during system validation. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Feature Extraction Results 

The features from the image were extracted by the CNN backbone architecture. Mask R-CNN 

utilizes ResNet101 and ResNet50 backbone architectures for feature extraction. The 

subsequent layers receive the extracted features as their input. Figure 48 presents the results of 

backbone feature maps from the dataset at different layers.  

 

(a) 

 

(b) 

 

(c) 

Figure 48:   Example of backbone feature maps at the (a) input layer (b) res2c_out 

activation layer, and (c) res3c_out activation layer 

Figure 49 presents the regions of interest (ROIs) and negative and positive anchors from the 

dataset. The regions of interest highlight the leaf area that is affected by the disease as the area 

of interest. 
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(a) (b) (c) 

Figure 49:   Examples of RPN anchors (a) Regions of Interest (ROIs), (b) Negative 

anchors, and (c) Positive anchors 

From the U-Net model, Fig. 50 shows the original image (bottom row), the ground truth from 

the mask or annotation (middle row), and the mask overlaid on the original image (top row). 

The data augmentation is applied equally to the original image and its mask before training, as 

seen in Fig. 51. 

 

Figure 50:   Original image, ground truth from the mask and the mask overlaid on the 

original image 
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Figure 51:   Data augmentation applied equally on the image and its mask 

4.2 Model Development Results 

4.2.1 Convolutional Neural Network Model Results 

(i) General Results 

The results of the CNN models trained in groups are given in Table 9. Results showed that the 

second group had the best overall performance with the highest validation accuracy, F-

measure, recall, and precision, and the lowest validation loss. Figure 52 shows the graphs of 

the CNN model’s performance for the second group. On the accuracy over epoch graph on the 

left of Fig. 52, results show that the validation accuracy rose rapidly to the 6th epoch, then 

remained steady around 90% with some fluctuations, hitting a maximum of 91.17%, while the 

training accuracy followed the same pattern without fluctuations, rising higher than the 

validation accuracy. This shows that the model generalized well. On the loss over epoch graph 

on the right of Fig. 52, results showed that the training loss decreases rapidly in the early 

epochs, and at epoch 21, it starts to decrease steadily until the end, while the validation loss 

decreases rapidly from the beginning, and from epoch 6, it started increasing steadily with 

fluctuations.  
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Table 9:     The CNN model performance for detecting banana diseases 

Model Group Epoch Validation 

loss 

Precision 

(%) 

Recall 

(%) 

F-measure 

(%) 

Validation 

Accuracy (%) 

CNN Group 1 100 0.7621 65.75 65.81 65.70 65.86 

CNN Group 2 100 0.2683 91.08 91.62 90.55 91.17 

CNN Group 3 100 0.7367 78.52 78.12 78.12 78.59 

CNN Group 4 100 0.6775 84.74 84.05 84.45 84.77 

CNN Group 5 100 0.5418 83.28 84.00 82.57 83.49 

 

Figure 52:   Performance for the CNN model 

(ii) Training Time Results 

Training time is a crucial measure of a model’s performance. Table 10 shows the training times 

for the CNN model experiments. The results show that from CNN group 2 to group 5, there is 

a significant time decrease compared to group 1. This is because CNN group 1 was trained 

with a larger image size, with a maximum of 700 KB per image, but in CNN groups 2 to 5, the 

images had a maximum of 100 KB per image. CNN group 5 had the least training time because 

it had fewer images compared to other groups, as seen in the data distribution for the CNN 

model in Table 4. 
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Table 10:   CNN model training time 

CNN Group Training time (Seconds) 

CNN Group 1 20 558.496 

CNN Group 2 13 586.031 

CNN Group 3 12 200.882 

CNN Group 4 14 189.828 

CNN Group 5 6983.726 

4.2.2 Mask Region-Based Convolutional Neural Network Model Results 

The Mask R-CNN model yielded a mean Average Precision (mAP) of 0.045 29. The Mask R-

CNN model with ResNet101 had a training time of 1166.52 minutes (69 991.2 seconds). The 

complexity of the Mask R-CNN model’s structure leads to a much longer training time when 

compared to the CNN model. The model was able to accurately segment Fusarium Wilt 

infected areas and Black Sigatoka infected areas with high confidence scores. Figure 53 

illustrates examples of how the Mask R-CNN model predicted the segmentations of the Black 

Sigatoka infected banana leaf and the Fusarium Wilt infected banana leaf respectively. 

  

(a) (b) 

Figure 53:   Examples of how the Mask R-CNN model predicts segmentations (a) Image 

segmentation of a leaf affected by Black Sigatoka disease: and (b) Image 

segmentation of a leaf affected by Fusarium Wilt disease 

4.2.3 The U-Net Model Results 

(i) The U-Net Model Loss Results 

The loss results for all the model experiments done are shown in Table 11. The results show 

that U-Net group 8 has the least validation loss and training loss, while the other groups vary 
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slightly. Following every training epoch, estimates of the training and validation losses were 

made. Figure 54 shows the loss over epoch graph for the U-Net group 8 model with 100 epochs. 

The graph shows that the training loss has a decreasing trend during training with small 

fluctuations, while the validation loss also decreases but with milder fluctuations, hitting a 

minimum of 0.0583. This suggests that both early in the training process and later on, the U-

Net model fits well on the features of our dataset. The U-Net group 8 model had the best 

performance because it obtained the lowest loss value when compared to other groups. 
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Table 11:   Model loss results 

Model Group  Training loss Validation loss 

U-Net group 1  0.0976 0.1151 

U-Net group 2  0.1041 0.1025 

U-Net group 3  0.1162 0.1161 

U-Net group 4  0.0755 0.0744 

U-Net group 5  0.0773 0.0743 

U-Net group 6  0.0450 0.0729 

U-Net group 7  0.0539 0.0735 

U-Net group 8  0.0474 0.0583 

U-Net group 9  0.1174 0.1331 

U-Net group 10  0.1136 0.1410 

U-Net group 11  0.1297 0.1893 

U-Net group 12  0.0863 0.1336 

U-Net group 13  0.1650 0.2297 

U-Net group 14  0.1773 0.2304 

U-Net group 15  0.0595 0.0886 

U-Net group 16  0.1468 0.2372 

U-Net group 17  0.1893 0.2574 

U-Net group 18  0.1582 0.1956 

U-Net group 19  0.1442 0.1793 

U-Net group 20  0.1340 0.1696 

U-Net group 21  0.1633 0.1814 

U-Net group 22  0.1468 0.1771 

U-Net group 23  0.1202 0.1496 

U-Net group 24  0.1386 0.2028 

U-Net group 25  0.0858 0.1658 
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Figure 54:   Loss over epoch graph for U-Net group 8 model 

(ii) The U-Net Model Evaluation Metrics Results 

The quality of the U-Net semantic segmentation model results was evaluated using the Dice 

coefficient and Intersection over Union. The evaluation metrics results for all the model 

experiments done are shown in Table 12. It can be seen that the best-performing group overall 

is U-Net group 8 which achieved a Dice coefficient of 96.45% and an Intersection over Union 

of 93.23%, with slight variations in other groups. Figure 55 shows the Intersection over Union 

over epoch graph for the U-Net group 8 model. In the graph, the training IoU begins near 0.84 

while the validation IoU begins near 0.88 and they both increase steadily with some 

fluctuations which are milder for the validation IoU. At the 100th epoch the training IoU is near 

0.94 while the validation IoU is near 0.92. This trend shows that the model learned well the 

dataset features and could segment the diseased areas well. Figure 56 shows the Dice 

Coefficient over epoch graph for the U-Net group 8 model. The graph shows that the training 

Dice Coefficient starts near 0.89 while the validation Dice Coefficient starts near 0.94 and they 

both rise steadily with some fluctuations. The validation Dice Coefficient had milder 

fluctuations. At the last epoch, the training Dice Coefficient was slightly over 0.96 while the 

validation Dice Coefficient was near 0.96. This trend shows that the model fits well on the data 

and could segment the diseased areas well. 
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Table 12:   Model evaluation metric results 

Model Group IoU (%) Dice Coefficient 

(%) 

Validation 

IoU (%) 

Validation Dice 

Coefficient (%) 

U-Net group 1 86.71 92.21 87.31 93.08 

U-Net group 2 86.98 92.47 87.99 93.57 

U-Net group 3 83.97 90.67 87.82 93.42 

U-Net group 4 87.51 92.73 91.41 95.49 

U-Net group 5 88.01 92.98 91.38 95.47 

U-Net group 6 92.86 95.97 91.62 95.58 

U-Net group 7 92.77 96.01 91.71 95.65 

U-Net group 8 93.28 96.25 93.23 96.45 

U-Net group 9 82.90 90.05 83.49 90.90 

U-Net group 10 85.09 91.38 84.06 91.29 

U-Net group 11 84.42 90.51 80.34 89.05 

U-Net group 12 89.72 93.72 87.48 93.20 

U-Net group 13 70.26 80.77 78.96 87.83 

U-Net group 14 75.41 84.83 75.01 85.55 

U-Net group 15 91.77 95.33 92.46 95.94 

U-Net group 16 81.51 88.35 77.13 86.97 

U-Net group 17 74.07 84.18 72.68 84.10 

U-Net group 18 73.29 83.43 73.71 84.76 

U-Net group 19 77.96 86.77 78.07 87.66 

U-Net group 20 81.45 88.61 79.22 88.11 

U-Net group 21 76.03 85.53 76.64 86.70 

U-Net group 22 79.41 87.42 84.30 91.26 

U-Net group 23 84.92 90.80 86.52 92.73 

U-Net group 24 83.08 89.97 80.72 89.22 

U-Net group 25 89.51 93.99 83.39 90.93 



73 
 

 

Figure 55:   Intersection over Union over epoch graph for U-Net group 8 model 

 

Figure 56:   Dice coefficient over epoch graph for U-Net group 8 model 

(iii) The U-Net Model Training Time Results 

How efficient a model is in training is an important measure of its performance. The training 

times in minutes for all the model group experiments done are given in Table 13. The training 

times in minutes for the first 12 model group experiments ranged from 162.47 minutes to 

175.63 minutes. The training times from group 13 to group 24 ranged from 89.16 minutes to 

93.57 minutes because they had less data and the training time for group 25 model experiment 

was 87.77 minutes because it had the least amount of data. 
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Table 13:   Model training time 

Model Group Training time (Mins) 

U-Net group 1 166.82 

U-Net group 2 172.12 

U-Net group 3 168.62 

U-Net group 4 175.63 

U-Net group 5 164.7 

U-Net group 6 165.66 

U-Net group 7 166.32 

U-Net group 8 170.3 

U-Net group 9 167.1 

U-Net group 10 162.47 

U-Net group 11 163.42 

U-Net group 12 168.41 

U-Net group 13 92.44 

U-Net group 14 92.45 

U-Net group 15 91.91 

U-Net group 16 92.43 

U-Net group 17 91.44 

U-Net group 18 92.43 

U-Net group 19 92.22 

U-Net group 20 89.16 

U-Net group 21 93.57 

U-Net group 22 91.43 

U-Net group 23 92.55 

U-Net group 24 93.49 

U-Net group 25 87.77 
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The U-Net model could segment the two banana diseases well. Figure 57 shows the 

segmentation predictions for banana leaves affected by Fusarium Wilt and Black Sigatoka 

diseases. In Fig. 57, the bottom row shows the original images and the second row from the 

bottom displays the ground truths from the annotations. The third row from the bottom is the 

predictions from the U-Net model while the top row is the predictions overlayed on top of the 

original image. From Fig. 57, the model was able to segment the areas where the leaves were 

not green signifying the presence of disease, and leave out healthy green areas. From the study 

all images had either Black Sigatoka disease or Fusarium Wilt disease, so every image had 

only one class. 

 

Figure 57:   Segmentation predictions from the U-Net model 

4.3 Model Deployment Results 

An interactive and intuitive mobile application was developed to deploy the CNN deep learning 

model. 
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Figure 58:   Banana disease detection mobile application splash screen and detect page in 

English and Kiswahili 

An intuitive and easy-to-use mobile application was developed that helps farmers and 

extension officers detect Fusarium Wilt and Black Sigatoka banana diseases early. When the 

application is opened, a splash screen is displayed for a few seconds, and then the detect page 

is opened (Fig. 58). Capturing images from the mobile phone camera or uploading images from 

the phone’s gallery can be done by the user in the "Detect" page. When a banana leaf or stalk 

image is captured or uploaded, the application automatically runs inference on the image in the 

background and displays the detection results. If either Black Sigatoka or Fusarium Wilt 

diseases are detected, the disease name and confidence score will be displayed together with a 

mitigation recommendation button, as seen in Fig. 59 and 60. When this mitigation 

recommendation button is pressed, it takes the user to a page that contains research-based 

mitigation recommendations for the specific detected diseases. This button will not appear 

when a healthy banana leaf or stalk is detected (Fig. 61). The detect page, about banana page, 

and about diseases page also have a change language feature on the top right where the user 

can select either of the two languages supported by this application, which are English and 

Kiswahili (Fig. 58). This feature is also included in the settings page, and it converts the entire 

application into either English or Kiswahili, as selected. This feature will help the local farmers 
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who do not understand English access the application in Kiswahili. 

  

Figure 59:   Banana disease detection mobile application detect page with detection results 

for Fusarium Wilt and mitigation recommendation page for the detected 

disease 
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Figure 60:   Banana disease detection mobile application detect page with detection results 

for Black Sigatoka and mitigation recommendation page for the detected 

disease 

  

Figure 61:   Banana disease detection mobile application detect page with results for a 

healthy banana leaf and an image that is not of a banana leaf or stalk 
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The mobile application also provides research-based information about bananas, including 

different types of bananas, the banana types that provide the highest yields, the banana types 

that have high demand in the market, and the best practices in banana farming in Tanzania (Fig. 

62). This banana information was gathered as a requirement from farmers. Furthermore, the 

mobile application provides research-based information about Fusarium Wilt and Black 

Sigatoka banana diseases. Information about the symptoms, causes, transmission mechanism, 

and mitigation recommendations are provided for each disease. Users can prevent the 

occurrence of these two banana diseases by knowing their transmission mechanisms and 

avoiding them. 

  

Figure 62:   Banana disease detection mobile application about banana page and about 

diseases page 

4.4 Validation of the Performance of the Developed Mobile Application Results 

Table 14 summarizes the results of the responses given by farmers to the mobile application 

validation questionnaire. From the questionnaire, all but 1 question received a 100% response 

of yes from the farmers meaning that these features were working properly and the information 

was present. The question about the application running inference automatically in the 
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background using the CNN model received an 80% yes response and 20% no response. This 

response was due to the wrong predictions that were given by the application when the 

application deployed the TensorFlow Lite version of the CNN deep learning model. To 

improve the mobile application’s predictions the mobile application deployed the original CNN 

TensorFlow model on a web server and an API was developed to send detection requests from 

the mobile application to the server and return responses. 

Table 14:   Results of the responses given by farmers to the mobile application validation 

questionnaire 

Questions Yes (%) No (%) 

Does the mobile application allow the farmer to capture an image using 

the mobile phone camera? 

100 0 

Does the mobile application allow the farmer to upload an image from 

the phone’s gallery? 

100 0 

Does the mobile application allow the farmer to display the captured 

or uploaded image? 

100 0 

Does the mobile application run inference automatically on the device, 

in the background on the captured or uploaded image using the CNN 

model? 

80 20 

Does the mobile application allow the farmer to view detection results? 100 0 

Does the mobile application allow the farmer to view mitigation 

recommendations when either Black Sigatoka or Fusarium Wilt 

diseases are detected? 

100 0 

Does the mobile application provide farmers with banana information 

including different types of bananas, banana types that provide the 

highest yields, banana types that have high demand in the market, and 

the best practices in banana farming? 

100 0 

Does the mobile application provide farmers with Black Sigatoka and 

Fusarium Wilt banana disease information including causes, 

symptoms, transmission mechanism, and mitigation 

recommendations? 

100 0 

Does the mobile application allow the farmer to change language from 

English to Swahili and vice versa? 

100 0 
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4.5 Discussion 

The achieved CNN model accuracy of 91.17% was considered good since a good CNN model 

should achieve an accuracy of at least 70% (Maxwell et al., 2021). The CNN model also 

yielded a precision of 91.08%, recall of 91.62% and F-measure of 90.55%. Similar results were 

obtained by Sanga et al. (2020) when they deployed an Inceptionv3 model, which achieved an 

accuracy of 95.41%. Other similar results were obtained by Amara et al. (2017) when they 

used the LeNet architecture for the classification of banana leaf diseases and achieved an 

accuracy of 92.88%, precision of 92.99%, recall of 92.88%, and F1-score of 92.94%. Similar 

results were obtained by another study done by Bhuiyan et al. (2023) when they diagnosed 

banana leaf diseases using the BananaSqueezeNet model and achieved an accuracy of 96.25%, 

precision of 96.53%, recall of 96.25% and F1-score of 96.17%. Despite this good performance, 

this study used a small number of images. As a result, the assessed CNN model in this study is 

accurate and suitable for use in the early detection of banana diseases. 

In the training times results for the CNN model experiments, the size of the images in KB was 

reduced from a maximum of 700 KB for images used in training CNN group 1 to a maximum 

of 100 KB for images used in training CNN group 2 to 5. This reduction of size helped the 

model to train faster while still making good predictions.  

The Mask R-CNN model achieved a mean Average Precision (mAP) of 0.045 29. This result 

was obtained while testing in the initial experiments with a few datasets in the early stage of 

the research. The Mask R-CNN model was created to be compatible with TensorFlow 1. In the 

later stage of the research, TensorFlow 1 was deprecated and only TensorFlow 2 was used. An 

update was found for Mask R-CNN which was compatible with TensorFlow 2.4 but later this 

too was deprecated. The Mask R-CNN model was therefore not compatible with the current 

versions of TensorFlow which resulted in the inability to continue running experiments with 

different hyperparameters to improve the mean Average Precision value. A similar study done 

by Loyani et al. (2021) for the segmentation of a tomato plant paste named tuta absoluta using 

the Mask R-CNN model yielded a mean Average Precision of 85.67%. A similar study done 

by Selvaraj et al. (2019) focused on the detection of banana pests and diseases using a Faster 

R-CNN model based on ResNet50 and yielded a mean Average Precision of 99%, 70%, 97%, 

and 73% for the pseudostem, leaves, fruit bunch, and entire plant respectively. 

U-Net group 8 model had the best performance from all the groups with a Dice Coefficient of 



82 
 

96.45% and an Intersection over Union of 96.52%. Similar results were obtained by Loyani et 

al. (2021) when they segmented a tomato plant paste called tuta absoluta using a U-Net model. 

Their model achieved a Dice Coefficient of 82.86% and an Intersection over Union of 78.60%. 

Also, similar results were obtained by Wang et al. (2023) when they segmented pear leaf 

diseases using an MFBP-UNet model. Their model achieved a Dice metric of 92%, and a Mean 

Intersection over Union of 86.15%. The dice coefficient usually has a higher value than 

Intersection over Union in the same segmentation performance. 

The mobile application developed in this study did not deploy the Mask R-CNN or the U-Net 

image segmentation models because these models were not compatible with the flutter_tflite 

package used for interacting with deep learning models in the mobile application. The CNN 

model was compatible with this flutter package and therefore it was deployed in the mobile 

application.   

Research shows that smallholder banana growers in East Africa have limited background 

knowledge of banana agronomy (CABI, 2019). There is also a limited uptake of 

recommendations on banana agronomy from research (CABI, 2019). The mobile application 

developed in this study provides research-based information about the banana plant (including 

banana types, banana types with most yields, highly demanded banana types and banana 

farming) and about Fusarium Wilt and Black Sigatoka banana diseases that can be easily 

consumed by farmers to improve their banana farming and production. The mobile application 

has an extra label and can predict other things apart from the healthy and diseased banana 

plants.  Two languages are supported by the mobile application which are Swahili and English. 

The Swahili language will help farmers who do not understand the English language to be able 

to consume and use the information provided by the application. The provided research-based 

information and change language features are improvements from the mobile application 

developed by this study when compared to previously developed plant disease detection mobile 

application developed by Loyani and Machuve (2021) and Sanga et al. (2020). The mobile 

application developed in this study was able to correctly classify images of diseased and 

healthy banana plants and other images with a confidence score of more than 90% in less than 

5 seconds per image. A similar study done by Hui et al. (2021) developed a mobile application 

that deployed an object detection model to detect grape diseases and the application yielded an 

accuracy of 97.9%. Another similar study done by Wang and Shabrina (2023) developed a 

mobile application that deploys EfficientNetB0 for the multi-class tomato plant disease 
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classification, and the application achieved an accuracy of 91.4%.  
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

The objective of this research was to develop a deep-learning image segmentation model for 

early identification of banana diseases. To achieve this objective, the study assessed Mask R-

CNN and U-Net image segmentation deep learning architectures, for instance, and semantic 

segmentation respectively of Fusarium Wilt and Black Sigatoka banana diseases. The study 

also assessed a classification Convolutional Neural Network (CNN) architecture to identify the 

two banana diseases. The results of the experiments showed that the Mask R-CNN ResNet101 

model yielded a mAP of 0.045 29 in segmenting the two banana diseases. The results also 

showed that an Intersection over Union (IoU) of 93.23% and a Dice Coefficient of 96.45% was 

achieved by the U-Net model. The CNN model yielded an accuracy of 91.71% in classifying 

the two banana diseases. Additionally, the Fusarium Wilt and Black Sigatoka infected banana 

leaves and stalks were segmented using the Mask R-CNN and U-Net models.  

This study also developed an interactive mobile application for the early detection of Fusarium 

Wilt and Black Sigatoka banana diseases. The mobile application deploys a CNN model that 

classifies these two diseases, healthy banana leaves, and images that are not of a banana leaf or 

stalk. The mobile application was able to correctly classify images with diseases, healthy 

images, and images that are not of the banana plant with a confidence of 90% and above in less 

than five seconds per image. The application could detect banana diseases at an early stage and 

provide research-based mitigation recommendations that extension officers and farmers can 

use to avoid yield losses and financial losses. The application also provides research-based 

information on banana farming and the two diseases. The feature of supporting English and 

Kiswahili languages plays a huge role in helping local farmers in rural areas who do not 

understand English. This work demonstrates how deep learning may be used to accurately 

identify diseased plants early enough for farmers to take the necessary precautions to reduce 

the damaging impacts of these diseases and save their yields. 

5.2 Recommendations 

This study recommends the Ministry of Agriculture and other agricultural stakeholders 

including Non-Governmental Organizations (NGOs) utilize the presented findings in 
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addressing the issue of food insecurity in Tanzania. 

Farmers and agricultural extension officers are recommended to automatically detect Fusarium 

Wilt and Black Sigatoka diseases using the developed mobile application. They can also put to 

good use the research-based information provided by the mobile application and improve 

banana farming and production.  

Furthermore, future studies could focus on developing a web-based system that will allow the 

administrator to update or patch the information on the mobile application easily using a web 

interface. The assessed models will be continually improved to provide farmers and extension 

officers with robust prediction models. 
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APPENDICES 

Appendix 1:     Questions that Were Used to Come Up with the Functional and Non-

Functional Requirements 

Question 

Number 

Question 

1 What features should I included in the mobile application? 

2 What information should I add to the mobile application that will be of use 

to farmers? 
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Appendix 2:     Mobile Application Validation Questionnaire 

Questions / Maswali Yes / 

Ndio 

No / 

Hapana 

Does the mobile application allow the farmer to capture an image using 

the mobile phone camera? 

 

Je, programu ya simu inamruhusu mkulima kunasa picha kwa kutumia 

kamera ya simu ya mkononi? 

 

  

Does the mobile application allow the farmer to upload an image from 

the phone’s gallery? 

 

Je, programu ya simu inamruhusu mkulima kupakia picha kutoka 

kwenye ghala ya simu? 

 

  

Does the mobile application allow the farmer to display the captured or 

uploaded image? 

 

Je, programu ya simu inamruhusu mkulima kuonyesha picha 

iliyonaswa au kupakiwa? 

 

  

Does the mobile application run inference automatically on the device, 

in the background on the captured or uploaded image using the CNN 

model? 

 

Je, programu ya simu huendesha makisio kiotomatiki kwenye kifaa, 

chinichini kwenye picha iliyonaswa au kupakiwa kwa kutumia muundo 

wa CNN? 

 

  

Does the mobile application allow the farmer to view detection results? 

 

Je, programu ya simu inamruhusu mkulima kuona matokeo ya 

ugunduzi? 

 

  

  

Does the mobile application allow the farmer to view mitigation 

recommendations when either Black Sigatoka or Fusarium Wilt 

diseases are detected? 

 

Je, programu ya simu ya mkononi inamruhusu mkulima kuona 

mapendekezo ya kupunguza wakati magonjwa ya Black Sigatoka au 

Fusarium Wilt yanapogunduliwa? 

 

  

Does the mobile application provide farmers with banana information 

including different types of bananas, banana types that provide the 

highest yields, banana types that have high demand in the market, and 

the best practices in banana farming? 
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Je, programu ya simu ya mkononi inawapa wakulima taarifa za ndizi 

ikiwa ni pamoja na aina tofauti za ndizi, aina za ndizi zinazotoa mavuno 

mengi zaidi, aina za ndizi zinazohitajika sana sokoni, na mbinu bora za 

kilimo cha ndizi? 

 

Does the mobile application provide farmers with Black Sigatoka and 

Fusarium Wilt banana disease information including causes, 

symptoms, transmission mechanism, and mitigation recommendations? 

 

Je, programu ya simu ya mkononi huwapa wakulima taarifa za ugonjwa 

wa ndizi za Black Sigatoka na Fusarium Wilt ikiwa ni pamoja na 

sababu, dalili, utaratibu wa maambukizi na mapendekezo ya 

kupunguza? 

 

  

Does the mobile application allow the farmer to change language from 

English to Swahili and vice versa? 

 

Je, programu ya simu inamruhusu mkulima kubadilisha lugha kutoka 

Kiingereza hadi Kiswahili na kinyume chake? 
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Appendix 3:     Mask R-CNN Model Source Code 

Importing important libraries 

import os 

import sys 

import random 

import math 

import re 

import time 

import numpy as np 

import cv2 

import cython   

import scipy   

import json 

import pandas as pd 

import datetime 

from math import nan, isnan 

# Used in plotting 

import matplotlib 

import matplotlib.pyplot as plt 

import matplotlib.patches as patches 

import matplotlib.lines as lines 

from matplotlib.patches import Polygon 

 

from skimage.io import imread, imshow, imread_collection, 

concatenate_images 

from skimage.transform import resize 

 

Importing Mask R-CNN libraries 

from mrcnn.config import Config 

from mrcnn import utils 

import mrcnn.model as modellib 

from mrcnn import visualize 

from mrcnn.model import log 

from mrcnn.visualize import display_images 

 

%matplotlib inline  

 

Defining configurations 

class DiseasesConfig(Config): 

    """Configuration for training on the dataset. 

    Derives from the base Config class and overrides values specific 

    to the dataset. 

    """ 

    # Give the configuration a recognizable name 

    NAME = "diseases" 
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    # Train on 1 GPU and 1 images per GPU. We can put multiple images 

on each 

    # GPU. Batch size is (GPU_COUNT * images_per_GPU). 

    GPU_COUNT = 1 

    IMAGES_PER_GPU = 1 # Initially used 1 

 

    # Number of classes (including background) 

    NUM_CLASSES = 1 + 3  # background + black_sigatoka, fusarium_wilt, 

healthy 

 

    # Use small images for faster training. Set the limits of the small 

side 

    IMAGE_MIN_DIM = 512  

    IMAGE_MAX_DIM = 512  

 

    # Aim to allow ROI sampling to pick 33% positive ROIs. 

    TRAIN_ROIS_PER_IMAGE = 200   

 

    # set number of epoch 

    STEPS_PER_EPOCH = 150  

 

    # set validation steps  

    VALIDATION_STEPS = 50 

 

    # Backbone network architecture 

    # Supported values are: resnet50, resnet101. 

    BACKBONE = 'resnet101'     

     

    # The strides of each layer of the FPN Pyramid. 

    BACKBONE_STRIDES = [4, 8, 16, 32, 64] 

     

    # Anchor stride 

    RPN_ANCHOR_STRIDE = 1 

     

    # Non-max suppression threshold to filter RPN proposals. 

    RPN_NMS_THRESHOLD = 0.9 #default was 0.7 

 

    # If enabled, resizes instance masks to a smaller size to reduce 

    # memory load. Recommended when using high-resolution images. 

    USE_MINI_MASK = True 

    MINI_MASK_SHAPE = (28, 28) 

     

    # Use smaller anchors because our image and objects are small 

    RPN_ANCHOR_SCALES = (8, 16, 64, 128, 256)   

    MAX_GT_INSTANCES = 100 

    POST_NMS_ROIS_INFERENCE = 1000 

    POST_NMS_ROIS_TRAINING = 2000 
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    # Minimum probability value to accept a detected instance 

    DETECTION_MIN_CONFIDENCE = 0.7 

    WEIGHT_DECAY = 0.0001 

     

config = DiseasesConfig() 

config.display() 

 

class InferenceConfig(DiseasesConfig): 

    # Set batch size to 1 since we'll be running inference on 

    # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU 

    GPU_COUNT = 1 

    IMAGES_PER_GPU = 1 

 

Custom function to load the dataset 

source = "diseases"  

############################################################ 

#  Dataset 

############################################################ 

from skimage.io import imread, imshow, imread_collection, 

concatenate_images 

from skimage.transform import resize 

 

class CustomDataset(utils.Dataset): 

 

    def load_custom(self, dataset_dir, subset): 

        """Load a subset of the Banana Disease dataset. 

        dataset_dir: Root directory of the dataset. 

        subset: Subset to load: train or test 

        subset_class: Subset to load: black_sigatoka, fusarium_wilt or 

healthy 

        """ 

 

        # Train or test dataset? 

        assert subset in ["train2", "test2"] 

        dataset_dir = os.path.join(dataset_dir, subset) 

        print(dataset_dir) 

         

 

        # Train or validation dataset 

        filenames = os.listdir(dataset_dir) 

        jsonfiles,annotations=[],[] 

        for filename in filenames: 

            if filename.endswith(".json"): 

                jsonfiles.append(filename) 

                annotation = 

json.load(open(os.path.join(dataset_dir,filename))) 
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                # Insure this picture is in this dataset 

                imagename = annotation['imagePath'] 

                if not 

os.path.isfile(os.path.join(dataset_dir,imagename)): 

                    print(imagename) 

                    continue 

                if len(annotation["shapes"]) == 0: 

                    continue 

                # you can filter what you don't want to load 

                annotations.append(annotation) 

                 

        print("In {source} {subset} dataset we have {number:d} 

annotation files." 

            .format(source=source, 

subset=subset,number=len(jsonfiles))) 

        print("In {source} {subset} dataset we have {number:d} valid 

annotations." 

            .format(source=source, 

subset=subset,number=len(annotations))) 

  

        labelslist = [] 

        for annotation in annotations: 

            # Get the x, y coordinaets of points of the polygons that 

make up 

            # the outline of each object instance. These are stores in 

the 

            # shape_attributes (see json format above) 

            shapes = []  

            classids = [] 

  

            for shape in annotation["shapes"]: 

                # first we get the shape classid 

                label = shape["label"] 

                if labelslist.count(label) == 0: 

                    labelslist.append(label) 

                classids.append(labelslist.index(label)+1) 

                shapes.append(shape["points"]) 

             

            # load_mask() needs the image size to convert polygons to 

masks. 

            width = annotation["imageWidth"] 

            height = annotation["imageHeight"] 

            self.add_image( 

                source, 

                image_id=annotation["imagePath"],  # use file name as a 

unique image id 

                path=os.path.join(dataset_dir,annotation["imagePath"]), 

                width=width, height=height, 
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                shapes=shapes, classids=classids) 

  

        print("In {source} {subset} dataset we have {number:d} class 

item" 

            .format(source=source, 

subset=subset,number=len(labelslist))) 

        print(labelslist) 

         

        # Add classes. 

        for labelid, labelname in enumerate(labelslist): 

            self.add_class(source,labelid,labelname) 

             

    def load_mask(self,image_id): 

        """ 

        Generate instance masks for an image. 

       Returns: 

        masks: A bool array of shape [height, width, instance count] 

with one mask per instance. 

        class_ids: a 1D array of class IDs of the instance masks. 

        """ 

        # If not the source dataset you want, delegate to parent class. 

        image_info = self.image_info[image_id] 

        if image_info["source"] != source: 

            return super(self.__class__, self).load_mask(image_id) 

  

        # Convert shapes to a bitmap mask of shape 

        # [height, width, instance_count] 

        info = self.image_info[image_id] 

        mask = np.zeros([info["height"], info["width"], 

len(info["shapes"])], dtype=np.uint8) 

        #printsx,printsy=zip(*points) 

        for idx, points in enumerate(info["shapes"]): 

            # Get indexes of pixels inside the polygon and set them to 

1 

            pointsy,pointsx = zip(*points) 

            rr, cc = skimage.draw.polygon(pointsx, pointsy)     

            mask[rr, cc, idx] = 1 

        masks_np = mask.astype(bool) 

        classids_np = np.array(image_info["classids"]).astype(np.int32) 

        # Return mask, and array of class IDs of each instance. Since 

we have 

        # one class ID only, we return an array of 1s 

        return masks_np, classids_np 

  

    def image_reference(self,image_id): 

        """Return the path of the image.""" 

        info = self.image_info[image_id] 

        if info["source"] == source: 
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            return info["path"] 

        else: 

            super(self.__class__, self).image_reference(image_id) 

 

Configuring the dataset 

# Configuring the datasets 

config = DiseasesConfig() 

dataset_train, dataset_val = CustomDataset(), CustomDataset() 

dataset_train.load_custom(dataset_path,"train2") 

dataset_train.prepare() 

dataset_val.load_custom(dataset_path,"test2") 

dataset_val.prepare() 

config.NUM_CLASSES = len(dataset_train.class_info) 

 

Defining the model and loading weights 

model = modellib.MaskRCNN(mode="training", config=DiseasesConfig(), 

model_dir=MODEL_DIR) 

model.keras_model.summary() 

 

# Train new model using coco dataset 

print("Loading weights ", weights_path) 

model.load_weights(weights_path, by_name=True, exclude=[ 

                "mrcnn_class_logits", "mrcnn_bbox_fc", 

                "mrcnn_bbox", "mrcnn_mask"]) 

 

Training the head layers 

"""Train the model.""" 

# *** This training schedule is an example. Update to your needs *** 

print("Training network heads") 

start_train = time.time() 

model.train(dataset_train, dataset_val, 

            learning_rate=config.LEARNING_RATE, 

            epochs=5, 

            layers='heads') 

#            augmentation=seq_of_aug) 

history = model.keras_model.history.history 

end_train = time.time() 

minutes = round((end_train - start_train) / 60, 2) 

print(f'Training took {minutes} minutes') 

 

Plotting the model 

history.keys() 

# Get training statistics  

#total loss    

loss = history['loss'] 
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val_loss = history['val_loss'] 

#rpn classification loss 

rpn_class_loss = history['rpn_class_loss'] 

val_rpn_class_loss = history['val_rpn_class_loss'] 

#rpn bounding box loss 

rpn_bbox_loss = history['rpn_bbox_loss'] 

val_rpn_bbox_loss = history['val_rpn_bbox_loss'] 

#Mask rcnn classification loss 

mrcnn_class_loss = history['mrcnn_class_loss'] 

val_mrcnn_class_loss = history['val_mrcnn_class_loss'] 

#Mask rcnn bounding box loss 

mrcnn_bbox_loss = history['mrcnn_bbox_loss'] 

val_mrcnn_bbox_loss = history['val_mrcnn_bbox_loss'] 

#mask loss 

mrcnn_mask_loss = history['mrcnn_mask_loss'] 

val_mrcnn_mask_loss = history['val_mrcnn_mask_loss'] 

epochs = range(len(loss)) 

 

# Plot train & val loss 

plt.plot(epochs, loss, 'ro-', label='Training loss') 

plt.plot(epochs, val_loss, 'y', label='Validation loss') 

plt.title('Training and validation loss') 

plt.ylabel('Loss') 

plt.xlabel('Epoch') 

plt.legend() 

 

plt.figure() 

 

# Plot train & val rpn_class_loss  

plt.plot(epochs, rpn_class_loss, 'ro-', label='rpn_class_loss') 

plt.plot(epochs, val_rpn_class_loss, 'y', label='val_rpn_class_loss') 

plt.title('1. rpn_class_loss') 

plt.ylabel('Loss') 

plt.xlabel('Epoch') 

plt.legend() 

plt.figure() 

 

# Plot train & val rpn_bbox_loss  

plt.plot(epochs, rpn_bbox_loss, 'ro-', label='rpn_bbox_loss') 

plt.plot(epochs, val_rpn_bbox_loss, 'y', label='val_rpn_bbox_loss') 

plt.title('2. rpn_bbox_loss') 

plt.ylabel('Loss') 

plt.xlabel('Epoch') 

plt.legend() 

plt.figure() 

 

# Plot train & val mrcnn_class_loss  

plt.plot(epochs, mrcnn_class_loss, 'ro-', label='mrcnn_class_loss') 
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plt.plot(epochs, val_mrcnn_class_loss, 'y', 

label='val_mrcnn_class_loss') 

plt.title('3. mrcnn_class_loss') 

plt.ylabel('Loss') 

plt.xlabel('Epoch') 

plt.legend() 

plt.figure() 

 

# Plot train & val mrcnn_bbox_loss  

plt.plot(epochs, mrcnn_bbox_loss, 'ro-', label='mrcnn_bbox_loss') 

plt.plot(epochs, val_mrcnn_bbox_loss, 'y', label='val_mrcnn_bbox_loss') 

plt.title('4. mrcnn_bbox_loss') 

plt.ylabel('Loss') 

plt.xlabel('Epoch') 

plt.legend() 

plt.figure() 

 

# Plot train & val mrcnn_mask_loss  

plt.plot(epochs, mrcnn_mask_loss, 'ro-', label='mrcnn_mask_loss') 

plt.plot(epochs, val_mrcnn_mask_loss, 'y', label='val_mrcnn_mask_loss') 

plt.title('5. mrcnn_mask_loss') 

plt.ylabel('Loss') 

plt.xlabel('Epoch') 

plt.legend() 

 

plt.show() 

 

Function to test the model 

def test(model, image_path = None, video_path=None, savedfile=None): 

    assert image_path or video_path 

    class_names = ['Background', 'healthy', 'BS', 'FW'] 

 

     # Image or video? 

    if image_path: 

        # Run model detection and generate the color splash effect 

        print("Running on {}".format(image_path)) 

        # Read image 

        image = skimage.io.imread(image_path) 

        # Detect objects 

        r = model.detect([image], verbose=1)[0] 

        # Colorful 

        import matplotlib.pyplot as plt 

         

        _, ax = plt.subplots() 

        visualize.display_instances(image, boxes=r['rois'], 

masks=r['masks'],  

            class_ids = r['class_ids'], class_names=class_names, 

scores=r['scores'],  
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            title = "Banana Diseases Classification", ax = ax, 

show_mask=True, show_bbox=True,) 

 

        # Save output 

        if savedfile == None: 

            file_name = 

"test_{:%Y%m%dT%H%M%S}.png".format(datetime.datetime.now()) 

        else: 

            file_name = savedfile 

        plt.savefig(file_name) 

        #skimage.io.imsave(file_name, testresult) 

    elif video_path: 

        pass 

    print("Saved to ", file_name) 

 

Testing the model 

model = modellib.MaskRCNN(mode="inference", config=InferenceConfig(), 

model_dir=MODEL_DIR) 

 

# Get path to saved weights 

# Either set a specific path or find last trained weights 

# model_path = os.path.join(ROOT_DIR, ".h5 file name here") 

 

model_path = model.find_last() 

 

# Load trained weights 

print("Loading weights from ", model_path) 

model.load_weights(model_path, by_name=True) 

 

import os 

# we test all models trained on the dataset in different stage 

image_path = 

'/content/drive/MyDrive/BananaDiseaseClassificationModel/Mask_RCNN/Data

set/test_old/FW_1545.jpg' 

video_path = 

'/content/drive/MyDrive/BananaDiseaseClassificationModel/Mask_RCNN/Data

set/test_old/FW_1545.jpg' 

weights_path = 

'/content/drive/MyDrive/BananaDiseaseClassificationModel/Mask_RCNN/logs

/diseases20230305T1642'  

print(os.getcwd()) 

filenames = os.listdir(weights_path) 

for filename in filenames: 

    if filename.endswith(".h5"): 

        print(f"Load weights from {filename}") 

        model.load_weights(os.path.join(weights_path, 

filename),by_name=True) 

        savedfile_name = os.path.splitext(filename)[0] + ".jpg" 
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        test(model, image_path=image_path, video_path=video_path, 

savedfile=savedfile_name) 

 

Calculating the mean Average Precision 

# Compute VOC-Style mAP @ IoU=0.5 

# Running on 30 images. Increase for better accuracy. 

image_ids = np.random.choice(dataset_val.image_ids, 

len(dataset_val.image_ids)) 

APs = [] 

for image_id in image_ids: 

    # Load image and ground truth data 

    image, image_meta, gt_class_id, gt_bbox, gt_mask =\ 

        modellib.load_image_gt(dataset_val,  InferenceConfig(), 

                               image_id, use_mini_mask=False) 

 

    molded_images = np.expand_dims(modellib.mold_image(image, 

InferenceConfig()), 0) 

    # Run object detection 

    results = model.detect([image], verbose=0) 

    r = results[0] 

    # Compute AP 

    AP, precisions, recalls, overlaps =\ 

        utils.compute_ap(gt_bbox, gt_class_id, gt_mask, 

                         r["rois"], r["class_ids"], r["scores"], 

r['masks']) 

    APs.append(AP) 

print("APs", APs) 

 

print("Number of nan in APs List: ", len(APs) - 

np.count_nonzero(~np.isnan(APs))) 

 

APs = [x for x in APs if isnan(x) == False] 

print("APs", APs) 

print("mAP: ", np.mean(APs)) 
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Appendix 4:     The U-Net Model Source Code 

Install keras-unet 

pip install keras-unet 

 

Import Libraries 

import numpy as np 

import matplotlib.pyplot as plt 

%matplotlib inline 

import glob 

import os 

import sys 

import time 

import math 

import datetime 

from PIL import Image 

from tqdm import tqdm 

 

Load images and their corresponding masks 

masks = glob.glob("*.png") 

orgs = list(map(lambda x: x.replace(".png", ".jpg"), masks)) 

 

Rendering the image in the right orientation 

for image in orgs: 

 

    img = Image.open(image) 

    name = img.filename 

 

    if hasattr(img, "_getexif") and img._getexif() is not None: 

        exif = dict(img._getexif().items()) 

        orientation = exif.get(274) 

 

        # Rotate the img based on the orientation metadata 

        if orientation == 3: 

            img = img.rotate(180, expand=True) 

        elif orientation == 6: 

            img = img.rotate(270, expand=True) 

        elif orientation == 8: 

            img = img.rotate(90, expand=True) 

    img.save(name, 'JPEG') 

 

Resizing the images and their corresponding masks then convert them into NumPy arrays 

with tf.device(device_name): #use. GPU 

  for n, id_ in tqdm(enumerate(orgs), total=len(orgs)): 
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    imgs_list = [] 

    masks_list = [] 

    for image, mask in zip(orgs, masks): 

        imgs_list.append(np.array(Image.open(image).resize((512,512)))) 

        masks_list.append(np.array(Image.open(mask).resize((512,512)))) 

 

    imgs_np = np.asarray(imgs_list) 

    masks_np = np.asarray(masks_list) 

 

# Save the NumPy Array in Drive 

np.save('imgs_np', imgs_np); 

np.save('masks_np', masks_np); 

 

load the NumPy arrays from drive 

imgs_np = np.load('imgs_np.npy') 

masks_np = np.load('masks_np.npy') 

 

Splitting the data into train and validation sets 

from sklearn.model_selection import train_test_split 

 

x_train, x_val, y_train, y_val = train_test_split(x, y, test_size=0.2, 

random_state=0) 

 

print("x_train: ", x_train.shape)  

print("y_train: ", y_train.shape)  

print("x_val: ", x_val.shape)  

print("y_val: ", y_val.shape)  

 

Prepare train generator with data augmentation 

from keras_unet.utils import get_augmented 

 

train_gen = get_augmented( 

    x_train, y_train, batch_size=2, 

   data_gen_args = dict( 

        rotation_range=5., 

        width_shift_range=0.05, 

        height_shift_range=0.05, 

        shear_range=40, 

        zoom_range=0.2, 

        horizontal_flip=True, 

        vertical_flip=True, 

        fill_mode='constant' 

 

    )) 
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Configure the model 

from keras_unet.models import custom_unet 

 

input_shape = x_train[0].shape 

 

model = custom_unet( 

    input_shape, 

    filters=32, 

    use_batch_norm=True, 

    dropout=0.3, 

    dropout_change_per_layer=0.0, 

    num_layers=4 

) 

model.summary() 

 

Compile the model 

from keras.callbacks import ModelCheckpoint 

 

model_filename = 'banana_segm_model.h5' 

callback_checkpoint = ModelCheckpoint( 

    model_filename, 

    verbose=1, 

    monitor='val_loss', 

    save_best_only=True, 

) 

 

#from keras.optimizers import Adam, SGD 

from tensorflow.keras.optimizers import Adam, SGD 

from keras_unet.metrics import iou, iou_thresholded, dice_coef 

from keras_unet.losses import jaccard_distance 

 

with tf.device(device_name): 

  model.compile( 

      optimizer=SGD(learning_rate=0.001, momentum=0.99), 

      loss=jaccard_distance,  

      metrics=[iou, iou_thresholded, dice_coef] 

  ) 

 

Train the model 

start_train = time.time() 

history = model.fit_generator( 

    train_gen, 

    steps_per_epoch=400,  

    epochs=100,  

    validation_data=(x_val, y_val), 

    callbacks=[callback_checkpoint] 
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) 

 

end_train = time.time() 

minutes = round((end_train - start_train) / 60, 2) 

print(f'Training took {minutes} minutes') 

 

Plotting the model 

history.history.keys() 

 

# Get training statistics 

#iou 

iou_thres = history.history['iou_thresholded'] 

val_iou_thres = history.history['val_iou_thresholded'] 

#loss 

loss = history.history['loss'] 

val_loss = history.history['val_loss'] 

#dice coef 

dice = history.history['dice_coef'] 

val_dice = history.history['val_dice_coef'] 

 

epochs = range(len(iou_thres)) 

 

# Plot train & val iou 

plt.plot(epochs, iou_thres, 'b', label='iou') 

plt.plot(epochs, val_iou_thres, 'y', label='val_iou') 

plt.title('Training and validation IoU') 

plt.ylabel('IoU') 

plt.xlabel('Epoch') 

plt.legend() 

plt.figure() 

 

# Plot train & val dice 

plt.plot(epochs, dice, 'r', label='dice_coef') 

plt.plot(epochs, val_dice, 'y', label='val_dice_coef') 

plt.title('Training and validation Dice Coefficient') 

plt.ylabel('Dice Coefficient') 

plt.xlabel('Epoch') 

plt.legend() 

plt.figure() 

 

# Plot train & val loss 

plt.plot(epochs, loss, 'r', label='Training loss') 

plt.plot(epochs, val_loss, 'g', label='Validation loss') 

plt.title('Training and validation loss') 

plt.ylabel('Loss') 

plt.xlabel('Epoch') 

plt.legend() 
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plt.show() 

 

Plot original image, ground truth, prediction, and overlay 

model_filename = 

"/content/drive/MyDrive/BananaDiseaseClassificationModel/UNet/dataset7/

batch13/banana_segm_model.h5"  

model.load_weights(model_filename) 

y_pred = model.predict(x_val) 

 

from keras_unet.utils import plot_imgs 

 

plot_imgs(org_imgs=x_val, mask_imgs=y_val, pred_imgs=y_pred, 

nm_img_to_plot=10) 

 

Convert the model into TensorFlow Lite 

# Convert the model. 

converter = 

tf.lite.TFLiteConverter.from_keras_model(model)                     # 

Convert a saved model with tf.lite.TFLiteConverter.from_saved_model() 

tflite_model = converter.convert() 

 

# Save the model. 

with 

open('/content/drive/MyDrive/BananaDiseaseClassificationModel/UNet/data

set7/batch13/unet_model.tflite', 'wb') as f: 

  f.write(tflite_model) 
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Appendix 5:     The CNN Model Source Code 

Import libraries 

# Import Tensorflow 

import tensorflow as tf 

import os 

import time 

import matplotlib.pyplot as plt 

import numpy as np 

 

Height_size = 512  

Width_size = 512   

Batch_Size = 32 

 

Build the model 

model = tf.keras.models.Sequential([ 

    # Note the input shape is the desired size of the image 512x512 

with 3 bytes color 

    # This is the first convolution 

    tf.keras.layers.Conv2D(16, (3,3), activation='relu', 

input_shape=(Height_size, Width_size, 3)), 

    tf.keras.layers.MaxPooling2D(2, 2), 

    # Define a dropout regularization layer. 

    tf.keras.layers.Dropout(rate=0.2), 

    # The second convolution 

    tf.keras.layers.Conv2D(32, (3,3), activation='relu'), 

    tf.keras.layers.MaxPooling2D(2,2), 

    # Define a dropout regularization layer. 

    tf.keras.layers.Dropout(rate=0.2), 

    # The third convolution 

    tf.keras.layers.Conv2D(64, (3,3), activation='relu'), 

    tf.keras.layers.MaxPooling2D(2,2), 

    # Define a dropout regularization layer. 

    tf.keras.layers.Dropout(rate=0.2), 

    # The fourth convolution 

    tf.keras.layers.Conv2D(64, (3,3), activation='relu'), 

    tf.keras.layers.MaxPooling2D(2,2), 

    # Define a dropout regularization layer. 

    tf.keras.layers.Dropout(rate=0.2), 

    # Flatten the results to feed into a CNN 

    tf.keras.layers.Flatten(), 

    # 512 neuron hidden layer 

    tf.keras.layers.Dense(512, activation='relu'), 

    # 3 output neurons. 

    tf.keras.layers.Dense(4, activation='softmax') 

]) 
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model.summary() 

 

Compiling the model 

from keras.callbacks import ModelCheckpoint 

 

model_filename = 'cnn_model.h5' 

callback_checkpoint = ModelCheckpoint( 

    model_filename, 

    verbose=1, 

    monitor='val_loss', 

    save_best_only=True, 

) 

 

from tensorflow.keras.optimizers import RMSprop 

 

opt = tf.keras.optimizers.Adam(learning_rate=0.001) 

model.compile(loss= 

tf.keras.losses.CategoricalCrossentropy(from_logits=True, 

name="categorical_crossentropy"),  

              optimizer=opt,  

              metrics=['accuracy', 

tf.keras.metrics.Precision(thresholds=None), 

tf.keras.metrics.Recall(thresholds=None)]) 

 

Train and validation datagen 

from tensorflow.keras.preprocessing.image import ImageDataGenerator 

 

# All training images will be rescaled by 1./255 

train_datagen = ImageDataGenerator(rescale=1/255) 

 

# Flow training images in batches of 256 using train_datagen generator 

train_generator = train_datagen.flow_from_directory( 

        '/content/drive/MyDrive/BananaDiseaseClassificationModel/CNN/Fi

nal/batch5/train/',  # This is the source directory for training images 

        target_size=(Height_size, Width_size),  # All images will be 

resized to 512x512 

        batch_size=Batch_Size, 

        # Since we use sparse_categorical_crossentropy loss, we need 

categorical labels 

        class_mode='categorical') 

 

# All validation images will be rescaled by 1./255 

validation_datagen = ImageDataGenerator(rescale=1/255) 
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# Flow validation images in batches of 128 using train_datagen 

generator 

validation_generator = train_datagen.flow_from_directory( 

    '/content/drive/MyDrive/BananaDiseaseClassificationModel/CNN/Final/

batch5/test/',  # This is the source directory for validation images 

    target_size=(Height_size, Width_size),  # All images will be 

resized to 512x512 

    batch_size=Batch_Size, 

    # Since we use categorical_crossentropy loss, we need categorical 

labels 

    class_mode='categorical') 

 

Train the model 

start = time.time() 

history = model.fit( 

      train_generator, 

      steps_per_epoch=94,  

      epochs=100, 

      validation_data=validation_generator, 

      validation_steps = 24, 

      verbose=1, 

      callbacks=[callback_checkpoint]) 

 

end = time.time() 

Training_time = end - start 

print(f"Execution time: {round(Training_time, 5)} seconds") 

 

Plot the performance graphs 

f, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4)) 

t = f.suptitle('CNN Performance', fontsize=12) 

f.subplots_adjust(top=0.85, wspace=0.3) 

 

max_epoch = len(history.history['accuracy'])+1 

epoch_list = list(range(1,max_epoch)) 

ax1.plot(epoch_list, history.history['accuracy'], label='Train 

Accuracy') 

ax1.plot(epoch_list, history.history['val_accuracy'], label='Validation 

Accuracy') 

ax1.set_xticks(np.arange(1, max_epoch, 5)) 

ax1.set_ylabel('Accuracy Value') 

ax1.set_xlabel('Epoch') 

ax1.set_title('Accuracy') 

l1 = ax1.legend(loc="best") 

 

ax2.plot(epoch_list, history.history['loss'], label='Train Loss') 

ax2.plot(epoch_list, history.history['val_loss'], label='Validation 

Loss') 
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ax2.set_xticks(np.arange(1, max_epoch, 5)) 

ax2.set_ylabel('Loss Value') 

ax2.set_xlabel('Epoch') 

ax2.set_title('Loss') 

l2 = ax2.legend(loc="best") 
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Appendix 6:     Model Deployment Flutter Source Code 

'package:banana_disease_detection/AboutDiseasesFragments/BlackSigatokaFragm

ents/BSDiseaseMitigationRecommendation.dart'; 

import 

'package:banana_disease_detection/AboutDiseasesFragments/FusariumWiltRace1F

ragments/FWDiseaseMitigationRecommendation.dart'; 

import 'package:flutter/cupertino.dart'; 

import 'package:flutter/foundation.dart'; 

import 'package:flutter/material.dart'; 

import 'package:flutter/services.dart'; 

import 'package:persistent_bottom_nav_bar/persistent_tab_view.dart'; 

import 

'package:banana_disease_detection/DetectFragments/CaptureImage.dart'; 

import 'package:banana_disease_detection/DetectFragments/UploadImage.dart'; 

import 

'package:banana_disease_detection/AboutBananaFragments/BananaFarming.dart'; 

import 

'package:banana_disease_detection/AboutBananaFragments/BananaTypes.dart'; 

import 

'package:banana_disease_detection/AboutBananaFragments/BananaTypesWithMostY

ields.dart'; 

import 

'package:banana_disease_detection/AboutBananaFragments/HighlyDemandedBanana

Types.dart'; 

import 

'package:banana_disease_detection/AboutDiseasesFragments/BlackSigatoka.dart

'; 

import 

'package:banana_disease_detection/AboutDiseasesFragments/FusariumWiltRace1.

dart'; 

import 'package:image_picker/image_picker.dart'; 

import 'dart:io'; 

import 'package:flutter_localizations/flutter_localizations.dart'; 

import 'package:flutter_gen/gen_l10n/app_localizations.dart'; 

import 'package:banana_disease_detection/classes/language_constants.dart'; 

import 'classes/language.dart'; 

import 'package:flutter_tflite/flutter_tflite.dart'; 

import 'package:flutter_spinkit/flutter_spinkit.dart'; 

import 'package:http/http.dart' as http; 

import 'dart:convert'; 

 

void main() { 

  runApp(const MyApp()); 

} 

 

const String cnn = "ConvolutionalNeuralNetwork"; 

const String unet = "U-Net"; 

 

class MyApp extends StatefulWidget { 

  const MyApp({Key? key}) : super(key: key); 

 

  @override 

  State<MyApp> createState() => _MyAppState(); 

 

  static void setLocale(BuildContext context, Locale newLocale) { 

    _MyAppState? state = context.findAncestorStateOfType<_MyAppState>(); 

    state?.setLocale(newLocale); 

  } 

} 



118 
 

 

class _MyAppState extends State<MyApp> { 

 

  Locale? _locale; 

 

  setLocale(Locale locale) { 

    setState(() { 

      _locale = locale; 

    }); 

  } 

 

  @override 

  Widget build(BuildContext context) { 

    return MaterialApp( 

      debugShowCheckedModeBanner: false, 

      localizationsDelegates: AppLocalizations.localizationsDelegates, 

      supportedLocales: AppLocalizations.supportedLocales, 

      locale: _locale, 

      // home: BottomNavBar(), 

      home: const SplashScreen(), 

 

      initialRoute: "/", 

      routes: { 

      }, 

    ); 

  } 

} 

 

class SplashScreen extends StatefulWidget { 

  const SplashScreen({Key? key}) : super(key: key); 

 

  @override 

  State<SplashScreen> createState() => _SplashScreenState(); 

} 

 

class _SplashScreenState extends State<SplashScreen> { 

 

  @override 

  void initState() { 

    // TODO: implement initState 

    super.initState(); 

    Future.delayed(const Duration(seconds: 3)).then((value){ 

      Navigator.of(context).pushReplacement( 

          CupertinoPageRoute(builder: (ctx) => const BottomNavBar())); 

    }); 

  } 

   

  @override 

  Widget build(BuildContext context) { 

    return Scaffold( 

      body: SizedBox( 

        width: double.infinity, 

        child: Column( 

          mainAxisAlignment: MainAxisAlignment.center, 

          children: const [ 

            Image(image: AssetImage("assets/images/logo.png"), 

              width: 300, 

            ), 

            SizedBox( 

              height: 50, 

            ), 
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            SpinKitFadingCircle( 

              color: Colors.green, 

              size: 50.0, 

            ), 

          ], 

        ), 

      ), 

    ); 

  } 

} 

 

 

class BottomNavBar extends StatefulWidget { 

  const BottomNavBar({Key? key}) : super(key: key); 

 

  @override 

  State<BottomNavBar> createState() => _BottomNavBarState(); 

} 

 

class _BottomNavBarState extends State<BottomNavBar> { 

  @override 

  Widget build(BuildContext context) { 

    List<Widget> _buildScreens() { 

      return [ 

        const AboutBanana(), 

        const Detect(), 

        const AboutDiseases(), 

        const Settings(), 

      ]; 

    } 

 

    List<PersistentBottomNavBarItem> _navBarsItems(){ 

      return [ 

 

        PersistentBottomNavBarItem( 

          icon: const Icon(Icons.text_snippet), 

          title: (AppLocalizations.of(context)!.menuAboutBanana), 

          activeColorPrimary: Colors.green, 

          inactiveColorPrimary: Colors.grey, 

        ), PersistentBottomNavBarItem( 

          icon: const Icon(Icons.energy_savings_leaf), 

          title: (AppLocalizations.of(context)!.menuDetect), 

          activeColorPrimary: Colors.green, 

          inactiveColorPrimary: Colors.grey, 

        ), 

 

        PersistentBottomNavBarItem( 

          icon: const Icon(Icons.sick), 

          title: (AppLocalizations.of(context)!.menuAboutDiseases), 

          activeColorPrimary: Colors.green, 

          inactiveColorPrimary: Colors.grey, 

        ),PersistentBottomNavBarItem( 

          icon: const Icon(Icons.settings_outlined), 

          title: (AppLocalizations.of(context)!.menuSettings), 

          activeColorPrimary: Colors.green, 

          inactiveColorPrimary: Colors.grey, 

        ), 

      ]; 

    } 

 

    PersistentTabController controller; 
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    controller = PersistentTabController(initialIndex: 1); 

    return PersistentTabView( 

      context, 

      screens:_buildScreens(), 

      items: _navBarsItems(), 

      controller: controller, 

      confineInSafeArea: true, 

      backgroundColor: Colors.white, 

      handleAndroidBackButtonPress: true, 

      resizeToAvoidBottomInset: true, 

      stateManagement: true, 

      hideNavigationBarWhenKeyboardShows: true, 

      decoration: NavBarDecoration( 

        borderRadius: BorderRadius.circular(10.0), 

        colorBehindNavBar: Colors.white, 

      ), 

      popAllScreensOnTapOfSelectedTab: true, 

      popActionScreens: PopActionScreensType.all, 

      itemAnimationProperties: const ItemAnimationProperties( 

        duration: Duration(milliseconds: 200), 

        curve: Curves.ease, 

      ), 

      screenTransitionAnimation: const ScreenTransitionAnimation( 

        animateTabTransition: true, 

        curve: Curves.ease, 

        duration: Duration(milliseconds: 200), 

      ), 

      navBarStyle: 

      NavBarStyle.style3, 

 

 

    ); 

  } 

} 

 

// AboutBanana 

class AboutBanana extends StatefulWidget { 

  const AboutBanana({Key? key}) : super(key: key); 

 

  @override 

  State<AboutBanana> createState() => _AboutBananaState(); 

} 

 

class _AboutBananaState extends State<AboutBanana> { 

 

  @override 

  Widget build(BuildContext context) { 

 

    const banana_types  = 'assets/images/banana_types.jpg'; 

    const banana_types_with_most_yields  = 

'assets/images/banana_types_with_most_yields.jpg'; 

    const highly_demanded_banana_types  = 

'assets/images/highly_demanded_banana_types.jpg'; 

    const banana_farming  = 'assets/images/banana_farming.jpg'; 

 

    return Scaffold( 

      appBar: 

      AppBar( 

        title: Text(AppLocalizations.of(context)!.titleAboutBanana), 

        backgroundColor: Colors.green, 
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        actions: <Widget>[ 

          Padding( 

            padding: const EdgeInsets.all(8.0), 

            child: DropdownButton<Language>( 

              underline: const SizedBox(), 

              icon: const Icon( 

                Icons.language, 

                color: Colors.white, 

              ), 

              onChanged: (Language? language) async { 

                if (language != null) { 

                  MyApp.setLocale(context, Locale(language.languageCode, 

'')); 

                } 

              }, 

              items: Language.languageList() 

                  .map<DropdownMenuItem<Language>>( 

                    (e) => DropdownMenuItem<Language>( 

                  value: e, 

                  child: Row( 

                    mainAxisAlignment: MainAxisAlignment.spaceAround, 

                    children: <Widget>[ 

                      Text( 

                        e.flag, 

                        style: const TextStyle(fontSize: 30), 

                      ), 

                      Text(e.name) 

                    ], 

                  ), 

                ), 

              ) 

                  .toList(), 

            ), 

          ), 

        ], 

      ), 

 

      body: GridView.count( 

        primary: false, 

        padding: const EdgeInsets.all(20), 

        crossAxisSpacing: 10, 

        mainAxisSpacing: 10, 

        crossAxisCount: 2, 

        children: <Widget>[ 

          GestureDetector( 

            onTap: () { 

              PersistentNavBarNavigator.pushNewScreenWithRouteSettings( 

                context, 

                settings: const RouteSettings(name: "/banana"), 

                screen: const BananaTypes(), 

                pageTransitionAnimation: 

                PageTransitionAnimation.fade, 

              ); 

            }, 

            child: Card( 

                clipBehavior: Clip.antiAlias, 

                shape: RoundedRectangleBorder( 

                  borderRadius: BorderRadius.circular(8), 

                ), 

                color: Colors.white, 

                child: Column( 
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                  children: [ 

                    Image.asset( 

                      banana_types, 

                      height: 140, 

                      width: 180, 

                      fit: BoxFit.cover, 

                    ), 

                    Padding( 

                      padding: const EdgeInsets.all(8).copyWith(bottom: 0), 

                      child: Text( 

                        AppLocalizations.of(context)!.cardBananaTypes, 

                        style: const TextStyle( 

                          fontWeight: FontWeight.bold, 

                          color: Colors.black, 

                          fontSize: 16, 

                        ), 

                      ), 

                    ), 

                  ], 

                ) 

            ), 

          ), 

          GestureDetector( 

            onTap: () { 

              PersistentNavBarNavigator.pushNewScreenWithRouteSettings( 

                context, 

                settings: const RouteSettings(name: "/banana"), 

                screen: const BananaTypesWithMostYields(), 

                pageTransitionAnimation: 

                PageTransitionAnimation.fade, 

              ); 

            }, 

            child: Card( 

                clipBehavior: Clip.antiAlias, 

                shape: RoundedRectangleBorder( 

                  borderRadius: BorderRadius.circular(8), 

                ), 

                color: Colors.white, 

                child: Column( 

                  children: [ 

                    Image.asset( 

                      banana_types_with_most_yields, 

                      height: 120, 

                      width: 180, 

                      fit: BoxFit.cover, 

                    ), 

                    Padding( 

                      padding: const EdgeInsets.all(8).copyWith(bottom: 0), 

                      child: Text( 

                        

AppLocalizations.of(context)!.cardBananaTypesWithMostYields, 

                        style: const TextStyle( 

                          fontWeight: FontWeight.bold, 

                          color: Colors.black, 

                          fontSize: 16, 

                        ), 

                      ), 

                    ), 

                  ], 

                ) 

            ), 
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          ), 

          GestureDetector( 

            onTap: () { 

              PersistentNavBarNavigator.pushNewScreenWithRouteSettings( 

                context, 

                settings: const RouteSettings(name: "/banana"), 

                screen: const HighlyDemandedBananaTypes(), 

                pageTransitionAnimation: 

                PageTransitionAnimation.fade, 

              ); 

            }, 

            child: Card( 

                clipBehavior: Clip.antiAlias, 

                shape: RoundedRectangleBorder( 

                  borderRadius: BorderRadius.circular(8), 

                ), 

                color: Colors.white, 

                child: Column( 

                  children: [ 

                    Image.asset( 

                      highly_demanded_banana_types, 

                      height: 120, 

                      width: 180, 

                      fit: BoxFit.cover, 

                    ), 

                    Padding( 

                      padding: const EdgeInsets.all(8).copyWith(bottom: 0), 

                      child: Text( 

                        

AppLocalizations.of(context)!.cardHighlyDemandedBananaTypes, 

                        style: const TextStyle( 

                          fontWeight: FontWeight.bold, 

                          color: Colors.black, 

                          fontSize: 16, 

                        ), 

                      ), 

                    ), 

                  ], 

                ) 

            ), 

          ), 

          GestureDetector( 

            onTap: () { 

              PersistentNavBarNavigator.pushNewScreenWithRouteSettings( 

                context, 

                settings: const RouteSettings(name: "/banana"), 

                screen: const BananaFarming(), 

                pageTransitionAnimation: 

                PageTransitionAnimation.fade, 

              ); 

            }, 

            child: Card( 

                clipBehavior: Clip.antiAlias, 

                shape: RoundedRectangleBorder( 

                  borderRadius: BorderRadius.circular(8), 

                ), 

                color: Colors.white, 

                child: Column( 

                  children: [ 

                    Image.asset( 

                      banana_farming, 
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                      height: 140, 

                      width: 180, 

                      fit: BoxFit.cover, 

                    ), 

                    Padding( 

                      padding: const EdgeInsets.all(8).copyWith(bottom: 0), 

                      child: Text( 

                        AppLocalizations.of(context)!.cardBananaFarming, 

                        style: const TextStyle( 

                          fontWeight: FontWeight.bold, 

                          color: Colors.black, 

                          fontSize: 16, 

                        ), 

                      ), 

                    ), 

                  ], 

                ) 

            ), 

          ), 

        ], 

      ) 

    ); 

  } 

} 

 

// Detect 

class Detect extends StatefulWidget { 

  const Detect({Key? key}) : super(key: key); 

 

  @override 

  State<Detect> createState() => _DetectState(); 

} 

 

class _DetectState extends State<Detect> { 

 

  String _model = cnn; 

  File? file; 

  List? _outputs; 

  ImagePicker image = ImagePicker(); 

 

  Future predictImage(XFile image) async { 

    switch (_model) { 

      case unet: 

        await segmentImage(image); 

        break; 

      default: 

        await classifyImage(image); 

    // await recognizeImageBinary(image); 

    } 

  } 

 

  @override 

  void initState() { 

    super.initState(); 

    loadModel().then((value) {setState((){});}); 

  } 

 

  Future segmentImage(XFile image) async { 

    int startTime = DateTime.now().millisecondsSinceEpoch; 

    var output = await Tflite.runSegmentationOnImage( 

      path: image.path, 
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      imageMean: 127.5, 

      imageStd: 127.5, 

    ); 

 

    setState(() { 

      _outputs = output!; 

    }); 

    print(_outputs); 

    int endTime = DateTime.now().millisecondsSinceEpoch; 

    print("Inference took ${endTime - startTime}ms"); 

  } 

 

  Future classifyImage(XFile image) async { 

    int startTime = DateTime.now().millisecondsSinceEpoch; 

    var output = await Tflite.runModelOnImage( 

      path: image.path, 

      numResults: 1, 

      threshold: 0.05, 

      imageMean: 127.5, 

      imageStd: 127.5, 

    ); 

 

    setState(() { 

      _outputs = output!; 

    }); 

    print(_outputs); 

    int endTime = DateTime.now().millisecondsSinceEpoch; 

    print("Inference took ${endTime - startTime}ms"); 

  } 

 

  Future<void> sendImage(String path) async { 

    String url = 'http://192.168.1.248:5000/api/'; 

 

    Map<String, String> headers = { 

      'Content-Type': 'application/json', // Adjust the content type as 

needed 

    }; 

 

    Map<String, String> body = { 

      'imageBase64': path, 

    }; 

 

    String jsonBody = jsonEncode(body); 

 

    try { 

      final response = await http.post( 

        Uri.parse(url), 

        headers: headers, 

        body: jsonBody, 

      ); 

 

      if (response.statusCode == 200) { 

        print('Image uploaded successfully'); 

        Map<String, dynamic> data = jsonDecode(response.body); 

        List<Map<String, dynamic>> output = [ 

          {'confidence': data["confidence_score"], 'label': 

data['class_name']}]; 

        print("output test"); 

 

        setState(() { 

          _outputs = output!; 
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        }); 

        print(_outputs); 

 

      } else { 

        print('Image upload failed. Status code: ${response.statusCode}'); 

        print('Response body: ${response.body}'); 

 

      } 

    } catch (e) { 

      print('Error sending image: $e'); 

    } 

  } 

 

  Future<String> imageToBase64(XFile file) async { 

    List<int> imageBytes = await file!.readAsBytes(); 

    return base64Encode(imageBytes); 

  } 

 

  Future loadModel() async { 

    try { 

      String res; 

      switch (_model) { 

        case unet: 

          res = (await Tflite.loadModel( 

            model: "assets/model/unet_sept.tflite", 

            labels: "assets/model/unet_labels.txt", 

            // useGpuDelegate: true, 

          ))!; 

          break; 

        default: 

          res = (await Tflite.loadModel( 

            model: "assets/model/cnn_model.tflite", 

            labels: "assets/model/label.txt", 

            // useGpuDelegate: true, 

          ))!; 

      } 

      print(res); 

    } on PlatformException { 

      print('Failed to load model.'); 

    } 

  } 

 

  @override 

  void dispose() { 

    Tflite.close(); 

    super.dispose(); 

  } 

 

  @override 

  Widget build(BuildContext context) { 

 

    final ButtonStyle style = ElevatedButton.styleFrom( 

      textStyle: 

      const TextStyle(fontSize: 20), 

      backgroundColor: Colors.green[600], 

      shadowColor: Colors.green[600], 

      elevation: 10, 

    ); 

 

    List<Widget> stackChildren = []; 
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    if (_model == cnn) { 

      if (_outputs == null) { 

        print("Null"); 

      } else { 

        stackChildren.add(Center( 

          child: Column( 

            children: _outputs!.map((res) { 

              return Column( 

                  children: <Widget>[ 

                    Text( 

                    "${res["label"]}: ${(res["confidence"])}%", 

                      textAlign: TextAlign.center, 

                    style: TextStyle( 

                      color: Colors.green, 

                      fontSize: 30.0, 

                      background: Paint() 

                        ..color = Colors.white, 

                    ), 

                    ), 

                    if(res["label"] == 'healthy' || res["label"] == 

'not_banana')...[] else...[ 

                      const SizedBox(height: 20), 

                      ElevatedButton( 

                        style: style, 

                        onPressed: () { 

                          if (res["label"] == 'black_sigatoka') { 

                            PersistentNavBarNavigator 

                                .pushNewScreenWithRouteSettings( 

                              context, 

                              settings: const RouteSettings(name: "/home"), 

                              screen: const 

BSDiseaseMitigationRecommendation(), 

                              pageTransitionAnimation: 

PageTransitionAnimation 

                                  .fade, 

                            ); 

                          } else if (res["label"] == 'fusarium_wilt'){ 

                            PersistentNavBarNavigator 

                                .pushNewScreenWithRouteSettings( 

                              context, 

                              settings: const RouteSettings(name: "/home"), 

                              screen: const 

FWDiseaseMitigationRecommendation(), 

                              pageTransitionAnimation: 

PageTransitionAnimation 

                                  .fade, 

                            ); 

                          } else { 

 

                          } 

                        }, 

                        child: Text(AppLocalizations.of(context)! 

                            .buttonMitigationRecommendation), 

                      ), 

                    ], 

                  ], 

              ); 

            }).toList(), 

          ), 

        )); 

      } 
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    } else if (_model == unet) { 

      if (_outputs == null) {} else { 

        stackChildren.add(Positioned( 

          child: Container( 

              decoration: BoxDecoration( 

                  image: DecorationImage( 

                      alignment: Alignment.topCenter, 

                      image: MemoryImage( 

                          Uint8List.fromList( 

                              _outputs!.map((e) => 

int.parse(e.toString())).toList() 

                          ) 

                      ), 

                      fit: BoxFit.fill)), 

              child: Opacity( 

                  opacity: 0.3, child: Image.file(File(file!.path)))), 

        ), 

        ); 

      } 

    } 

 

    return Scaffold( 

      appBar: 

      AppBar( 

          title: Text(AppLocalizations.of(context)!.titleDetect), 

          backgroundColor: Colors.green, 

          actions: <Widget>[ 

            Padding( 

              padding: const EdgeInsets.all(8.0), 

              child: DropdownButton<Language>( 

                underline: const SizedBox(), 

                icon: const Icon( 

                  Icons.language, 

                  color: Colors.white, 

                ), 

                onChanged: (Language? language) async { 

                  if (language != null) { 

                    MyApp.setLocale(context, Locale(language.languageCode, 

'')); 

                  } 

                }, 

                items: Language.languageList() 

                    .map<DropdownMenuItem<Language>>( 

                      (e) => DropdownMenuItem<Language>( 

                    value: e, 

                    child: Row( 

                      mainAxisAlignment: MainAxisAlignment.spaceAround, 

                      children: <Widget>[ 

                        Text( 

                          e.flag, 

                          style: const TextStyle(fontSize: 30), 

                        ), 

                        Text(e.name) 

                      ], 

                    ), 

                  ), 

                ) 

                    .toList(), 

              ), 

            ), 

          ], 
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      ), 

 

      body: CustomScrollView( 

        slivers: <Widget>[ 

          SliverToBoxAdapter( 

            child: Padding( 

              padding: const EdgeInsets.all(8).copyWith(bottom: 0), 

              child: Column( 

                children: <Widget>[ 

                  Container( 

                    height: 400, 

                    width: 400, 

                    color: Colors.black12, 

                    child: file == null 

                        ? const Icon( 

                      Icons.image, 

                      size: 50, 

                    ) 

                        : Image.file( 

                      file!, 

                      fit: BoxFit.fill, 

                    ), 

                  ), 

                  const SizedBox(height: 20), 

                  ElevatedButton( 

                    style: style, 

                    onPressed: () { 

                      getcam(); 

                    }, 

                    child: 

Text(AppLocalizations.of(context)!.buttonCaptureImage), 

                  ), 

                  ElevatedButton( 

                    style: style, 

                    onPressed: () { 

                      getgall(); 

                    }, 

                    child: 

Text(AppLocalizations.of(context)!.buttonUploadImage), 

                  ), 

                  const SizedBox(height: 30), 

                  Stack( 

                    children: stackChildren, 

                  ), 

                ], 

              ), 

            ), 

          ), 

        ], 

      ), 

    ); 

  } 

 

  // Camera Functions 

  getcam() async { 

    // ignore: deprecated_member_use 

    var img = await image.pickImage(source: ImageSource.camera); 

    if (img == null) return null; 

    setState(() { 

      file = File(img!.path); 

    }); 
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    //predictImage(img); 

 

    Uint8List imagebytes = await img.readAsBytes(); //convert to bytes 

    String base64string = base64.encode(imagebytes); //convert bytes to 

base64 string 

    sendImage(base64string); 

 

  } 

 

  // Gallery Functions 

  getgall() async { 

    // ignore: deprecated_member_use 

    var img = await image.pickImage(source: ImageSource.gallery); 

    if (img == null) return null; 

    setState(() { 

      file = File(img!.path); 

    }); 

   // predictImage(img); 

 

    Uint8List imagebytes = await img.readAsBytes(); //convert to bytes 

    String base64string = base64.encode(imagebytes); //convert bytes to 

base64 string 

    sendImage(base64string); 

 

  } 

} 

 

// AboutDiseases 

class AboutDiseases extends StatefulWidget { 

  const AboutDiseases({Key? key}) : super(key: key); 

 

  @override 

  State<AboutDiseases> createState() => _AboutDiseasesState(); 

} 

 

class _AboutDiseasesState extends State<AboutDiseases> { 

 

  @override 

  Widget build(BuildContext context) { 

    const urlBSImage  = 'assets/images/Black_Sigatoka.jpg'; 

    const urlFWImage  = 'assets/images/Fusarium_Wilt.jpg'; 

 

    return Scaffold( 

      appBar: 

      AppBar( 

          title: Text(AppLocalizations.of(context)!.titleAboutDiseases), 

          backgroundColor: Colors.green, 

          actions: <Widget>[ 

            Padding( 

              padding: const EdgeInsets.all(8.0), 

              child: DropdownButton<Language>( 

                underline: const SizedBox(), 

                icon: const Icon( 

                  Icons.language, 

                  color: Colors.white, 

                ), 

                onChanged: (Language? language) async { 

                  if (language != null) { 

                    MyApp.setLocale(context, Locale(language.languageCode, 

'')); 

                  } 
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                }, 

                items: Language.languageList() 

                    .map<DropdownMenuItem<Language>>( 

                      (e) => DropdownMenuItem<Language>( 

                    value: e, 

                    child: Row( 

                      mainAxisAlignment: MainAxisAlignment.spaceAround, 

                      children: <Widget>[ 

                        Text( 

                          e.flag, 

                          style: const TextStyle(fontSize: 30), 

                        ), 

                        Text(e.name) 

                      ], 

                    ), 

                  ), 

                ) 

                    .toList(), 

              ), 

            ), 

        ], 

      ), 

 

      body: CustomScrollView( 

        slivers: <Widget>[ 

          SliverToBoxAdapter( 

            child: Padding( 

            padding: const EdgeInsets.all(8).copyWith(bottom: 0), 

              child: Card( 

                clipBehavior: Clip.antiAlias, 

                shape: RoundedRectangleBorder( 

                  borderRadius: BorderRadius.circular(24), 

                ), 

                color: Colors.white, 

                child: Column( 

                  children: [ 

                    Stack( 

                      children: [ 

                        Image.asset( 

                          urlBSImage, 

                          height: 180, 

                          width: 400, 

                          fit: BoxFit.cover, 

                        ),  

                        Positioned( 

                          bottom: 16, 

                          right: 16, 

                          left: 16, 

                          child: Text( 

                            

AppLocalizations.of(context)!.textBlackSigatoka, 

                            style: const TextStyle( 

                              fontWeight: FontWeight.bold, 

                              color: Colors.white, 

                              fontSize: 24, 

                            ), 

                          ), 

                        ), 

                      ], 

                    ), 

                    Padding( 
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                      padding: const EdgeInsets.all(8).copyWith(bottom: 0), 

                      child: Text( 

                        

AppLocalizations.of(context)!.textBlackSigatokaIntro, 

                        style: const TextStyle(fontSize: 14, color: 

Colors.black), 

                      ), 

                    ), 

                    ButtonBar( 

                      alignment: MainAxisAlignment.end, 

                      children: [ 

                        TextButton( 

                            onPressed: () { 

                              

PersistentNavBarNavigator.pushNewScreenWithRouteSettings( 

                                context, 

                                settings: const RouteSettings(name: 

"/diseases"), 

                                screen: const BlackSigatoka(), 

                                pageTransitionAnimation: 

PageTransitionAnimation.fade, 

                              ); 

                            }, 

                            child: Text( 

                              

AppLocalizations.of(context)!.buttonBSLearnMore, 

                              style: const TextStyle(fontSize: 14, color: 

Colors.green), 

                            ) 

                        ), 

                      ], 

                    ) 

                  ], 

                ) 

              ), 

            ), 

          ), 

          SliverToBoxAdapter( 

            child: Padding( 

              padding: const EdgeInsets.all(8).copyWith(bottom: 0), 

              child: Card( 

                  clipBehavior: Clip.antiAlias, 

                  shape: RoundedRectangleBorder( 

                    borderRadius: BorderRadius.circular(24), 

                  ), 

                  color: Colors.white, 

                  shadowColor: Colors.grey, 

                  child: Column( 

                    children: [ 

                      Stack( 

                        children: [ 

                          Image.asset( 

                            urlFWImage, 

                            height: 180, 

                            width: 400, 

                            fit: BoxFit.cover, 

                          ),  

                          Positioned( 

                            bottom: 16, 

                            right: 16, 

                            left: 16, 
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                            child: Text( 

                              

AppLocalizations.of(context)!.textFusariumWiltRace1, 

                              style: const TextStyle( 

                                fontWeight: FontWeight.bold, 

                                color: Colors.white, 

                                fontSize: 24, 

                              ), 

                            ), 

                          ), 

                        ], 

                      ), 

                      Padding( 

                        padding: const EdgeInsets.all(8).copyWith(bottom: 

0), 

                        child: Text( 

                          

AppLocalizations.of(context)!.textFusariumWiltRace1Intro, 

                          style: const TextStyle(fontSize: 14, color: 

Colors.black), 

                        ), 

                      ), 

                      ButtonBar( 

                        alignment: MainAxisAlignment.end, 

                        children: [ 

                          TextButton( 

                              onPressed: () { 

                                

PersistentNavBarNavigator.pushNewScreenWithRouteSettings( 

                                  context, 

                                  settings: const RouteSettings(name: 

"/diseases"), 

                                  screen: const FusariumWiltRace1(), 

                                  pageTransitionAnimation: 

PageTransitionAnimation.fade, 

                                ); 

                              }, 

                              child: Text( 

                                

AppLocalizations.of(context)!.buttonFWLearnMore, 

                                style: const TextStyle(fontSize: 14, color: 

Colors.green), 

                              ) 

                          ), 

                        ], 

                      ) 

                    ], 

                  ) 

              ), 

            ), 

          ), 

        ], 

      ), 

    ); 

  } 

} 

 

// Settings 

class Settings extends StatefulWidget { 

  const Settings({Key? key}) : super(key: key); 
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  @override 

  State<Settings> createState() => _SettingsState(); 

} 

 

class _SettingsState extends State<Settings> { 

 

  @override 

  Widget build(BuildContext context) { 

    return Scaffold( 

      appBar: 

      AppBar( 

          title: Text(AppLocalizations.of(context)!.titleSettings), 

          backgroundColor: Colors.green 

      ), 

      body: Center( 

        child: Column( 

          mainAxisSize: MainAxisSize.min, 

          children: <Widget>[ 

            DropdownButton<Language>( 

              iconSize: 30, 

              hint: Text(AppLocalizations.of(context)!.textChangeLanguage), 

              onChanged: (Language? language) async { 

                if (language != null) { 

                  MyApp.setLocale(context, Locale(language.languageCode, 

'')); 

                } 

              }, 

              items: Language.languageList() 

                  .map<DropdownMenuItem<Language>>( 

                    (e) => DropdownMenuItem<Language>( 

                  value: e, 

                  child: Row( 

                    mainAxisAlignment: MainAxisAlignment.spaceAround, 

                    children: <Widget>[ 

                      Text( 

                        e.flag, 

                        style: const TextStyle(fontSize: 30), 

                      ), 

                      Text(e.name) 

                    ], 

                  ), 

                ), 

              ) 

                  .toList(), 

            ), 

          ], 

        ), 

      ), 

    ); 

  } 

} 
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RESEARCH OUTPUTS 

i) Journal Paper 

Elinisa, C. A., & Mduma, N. (2024). Mobile-Based Convolutional Neural Network Model for 

the Early Identification of Banana Diseases. Smart Agricultural Technology, 100423. 

 

ii) Poster Presentation 
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OUTPUT 2:     Poster Presentation 

 


