
The Nelson Mandela AFrican Institution of Science and Technology

NM-AIST Repository https://dspace.mm-aist.ac.tz

Computational and Communication Science Engineering Masters Theses and Dissertations [CoCSE]

2024-05

Image segmentation deep learning

model used to Identify black Saigatoka

And Fusarium wilt in banana early

Elinisa, Christina

NM-AIST

https://dspace.nm-aist.ac.tz/handle/20.500.12479/2913

Provided with love from The Nelson Mandela African Institution of Science and Technology

IMAGE SEGMENTATION DEEP LEARNING MODEL USED TO

IDENTIFY BLACK SIGATOKA AND FUSARIUM WILT IN BANANA

EARLY

Christian Arnold Elinisa

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of

Master’s in Information and Communication Science and Engineering of the Nelson

Mandela African Institution of Science and Technology

Arusha, Tanzania

May, 2024

i

ABSTRACT

Bananas are among the most widely produced perennial fruit crops. Farmers largely produce

bananas because they are important staple food and cash crops. However, bananas are highly

affected by Fusarium Wilt and Black Sigatoka diseases. These diseases cause yield losses

ranging from 30% to 100% of all the banana produce. Farmers face challenges in detecting and

mitigating the effects of these two banana diseases because of a lack of knowledge of the

diseases and the use of traditional eye observation method in detection. This study is inspired

by the success of deep learning and computer vision in detecting a wide range of plant diseases.

The study proposed the use of deep learning to automate the early detection of Fusarium Wilt

and Black Sigatoka banana diseases. Mask R-CNN and U-Net image segmentation deep

learning models were assessed for instance and semantic image segmentation. A dataset

comprising 27 360 images of banana leaves and stalks that are healthy, Fusarium Wilt infected,

and Black Sigatoka infected collected from the farm was used to train the models. An addition

of 407 images of other things apart from the banana plant were downloaded from the internet

and used to train the CNN model. From the experiments, the Mask R-CNN model achieved a

mean Average Precision of 0.045 29 in segmenting the two banana diseases. The U-Net model

achieved an Intersection over Union (IoU) of 93.23% and a Dice Coefficient of 96.45%.

Similar results were obtained by Loyani et al. (2021) when they segmented a tomato plant paste

called tuta absoluta using a U-Net model. Their model achieved a Dice Coefficient of 82.86%

and an Intersection over Union of 78.60%. Additionally, the Fusarium Wilt and Black Sigatoka

infected banana leaves and stalks were segmented using the Mask R-CNN and U-Net models.

The CNN model yielded an accuracy of 91.71% in classifying the two banana diseases. Similar

results were obtained by Sanga et al. (2020) when they deployed an Inceptionv3 model, which

achieved an accuracy of 95.41%. The CNN model was deployed in a mobile application to be

used by farmers to detect the two banana diseases early. The mobile application could detect

banana diseases early and provide research-based mitigation recommendations that

smallholder farmers and other agricultural stakeholders can use to avoid yield losses and

financial losses.

ii

DECLARATION

I, Christian Arnold Elinisa, declare to the Senate of the Nelson Mandela African Institution of

Science and Technology that this dissertation is my original work and that it has neither been

submitted nor concurrently submitted for a degree award in any other institution.

Christian Arnold Elinisa

Name of Candidate Signature Date

The above declaration is confirmed by:

Dr. Neema Mduma

Name of Supervisor 1 Signature Date

Prof. Anthony Vodacek

Name of Supervisor 2 Signature Date

Prof. Ciira wa Maina 24/04/2024

Name of Supervisor 3 Signature Date

iii

COPYRIGHT

This dissertation is copyright material protected under the Berne Convention, the Copyright

Act of 1999 and other international and national enactments, in that behalf, on intellectual

property. It must not be reproduced by any means, in full or in part, except for short extracts in

fair dealing; for researcher private study, critical scholarly review or discourse with an

acknowledgement, without the written permission of the office of Deputy Vice-Chancellor for

Academics, Research and Innovations on behalf of both the author and the Nelson Mandela

African Institution of Science and Technology.

iv

CERTIFICATION

The undersigned certify that they have read and hereby recommend for acceptance by the

Nelson Mandela African Institution of Science and Technology, a dissertation titled “Image

Segmentation Deep Learning Model for Early Identification of Black Sigatoka and

Fusarium Wilt in Banana” submitted in partial fulfilment of the requirements for award of

the degree of Master’s in Information and Communication Science and Engineering of the

Nelson Mandela African Institution of Science and Technology.

Dr. Neema Mduma

Name of Supervisor 1 Signature Date

Prof. Anthony Vodacek

Name of Supervisor 2 Signature Date

Prof. Ciira wa Maina 24/04/2024

Name of Supervisor 3 Signature Date

v

ACKNOWLEDGEMENTS

First and foremost, I would like to thank the Almighty God for his grace during the time of my

Master’s degree at the Nelson Mandela African Institution of Science and Technology in many

aspects including love, guidance, wisdom, health, endurance, strength, and courage to

accomplish this Master’s program. I would like to extend my deepest gratitude to my family

for their prayers, encouragement, and unwavering support.

This research was accomplished by the combined efforts of many people. I would like to

express my gratitude to the following for their valuable contribution, assistance, and support

during the research period.

I would like to express my deepest gratitude to my supervisor, Dr. Neema Mduma for her

mentorship and for tirelessly providing support towards the accomplishment of this research;

also, to my supervisors, Prof. Anthony Vodacek from Rochester Institute of Technology in the

USA, and Prof. Ciira wa Maina from Dedan Kimathi University of Technology in Kenya, for

their guidance and valuable feedback, especially during manuscript writing. Thank you for

your great mentorship and supervision.

I extend my sincere gratitude for the financial support from the Data Science Africa (DSA);

International Development Research Centre (IDRC) and the Swedish International

Development Cooperation Agency (SIDA) through the Lacuna Fund in Agriculture, Artificial

Intelligence for Development (AI4D) Africa and the African Center for Technology Studies

(ACTS) that funded this research work.

Finally, I would like to thank my lectures, the NM-AIST CoCSE team, colleagues, classmates,

and friends for their support. I extend my gratitude to Mr. Kennedy Jomanga, Mr. Loyani

Loyani, Mr. Michael Nkotagu, and the farmers from IITA Arusha for their help in different

stages of my research.

vi

DEDICATION

I dedicate this work to my mother Ms. Joyce Joseph Ndesamburo.

vii

TABLE OF CONTENTS

ABSTRACT .. i

DECLARATION ... ii

COPYRIGHT .. iii

CERTIFICATION .. iv

ACKNOWLEDGEMENTS ... v

DEDICATION .. vi

LIST OF TABLES .. xi

LIST OF FIGURES ... xii

LIST OF APPENDICES .. xv

LIST OF ABBREVIATIONS AND SYMBOLS ... xvi

CHAPTER ONE .. 1

INTRODUCTION ... 1

1.1 Background of the Problem ... 1

1.2 Statement of the Problem ... 3

1.3 Rationale of the Study .. 3

1.4 Objectives .. 4

1.4.1 General Objective .. 4

1.4.2 Specific Objectives .. 4

1.5 Research Questions .. 4

1.6 Significance of the Study ... 5

1.7 Delineation of the Study .. 5

CHAPTER TWO ... 7

LITERATURE REVIEW .. 7

2.1 Bananas .. 7

2.2 Black Sigatoka ... 7

viii

2.3 Fusarium Wilt .. 9

2.4 Deep Learning Models and Feature Extraction ... 10

2.4.1 Convolutional Neural Network Feature Extraction ... 10

2.4.2 Mask Region-Based Convolutional Neural Network Model for Instance

Segmentation.. 15

2.4.3 The U-Net Model for Semantic Segmentation .. 26

2.5 Theoretical Literature Review ... 31

2.6 Empirical Literature Review .. 32

2.6.1 Feature Extraction .. 32

2.6.2 Using Deep Learning and Machine Learning to Detect Banana Diseases 33

2.6.3 Mobile Applications that deploy Deep Learning models for Plant Disease

Detection .. 35

2.7 Research Gap ... 35

CHAPTER THREE ... 37

MATERIALS AND METHODS ... 37

3.1 Study Area and Scope of the Research .. 37

3.2 Data Collection .. 37

3.3 Data Preprocessing... 39

3.3.1 Data Cleaning and Cropping .. 39

3.3.2 Data Renaming... 40

3.3.3 Data Annotation ... 41

3.4 Research Framework ... 42

3.5 Classification with Convolutional Neural Network Model ... 43

3.5.1 Convolutional Neural Network Model Hyper-Parameters Tuning 43

3.5.2 The CNN Model Classes and Data Grouping During Training 43

3.6 Transfer Learning... 46

ix

3.7 Mask Region-Based Convolutional Neutral Network Model Hyper-Parameter Tuning

.. 46

3.8 The U-Net Model ... 48

3.8.1 The U-Net Model Hyper-Parameter Tuning .. 48

3.8.2 The U-Net Model Classes and Data Grouping During Training 48

3.9 Experiment Setting... 51

3.10 Evaluation .. 52

3.10.1 Accuracy .. 52

3.10.2 Recall ... 52

3.10.3 Precision ... 52

3.10.4 The F-Measure ... 53

3.10.5 Mean Average Precision (mAP) .. 53

3.10.6 Intersection Over Union ... 54

3.10.7 Dice Coefficient ... 55

3.10.8 Loss Function ... 55

3.11 Model Deployment .. 56

3.11.1 Requirements Elicitation and Analysis .. 57

3.11.2 System Design ... 60

3.11.3 System Development Methodology ... 63

3.11.4 Technologies Used ... 63

3.12 Validation of the Performance of the Developed Mobile Application 63

CHAPTER FOUR .. 64

RESULTS AND DISCUSSION .. 64

4.1 Feature Extraction Results ... 64

4.2 Model Development Results .. 66

4.2.1 Convolutional Neural Network Model Results.. 66

x

4.2.2 Mask Region-Based Convolutional Neural Network Model Results 68

4.2.3 The U-Net Model Results .. 68

4.3 Model Deployment Results .. 75

4.4 Validation of the Performance of the Developed Mobile Application Results 79

4.5 Discussion .. 81

CHAPTER FIVE ... 84

CONCLUSION AND RECOMMENDATIONS .. 84

5.1 Conclusion ... 84

5.2 Recommendations .. 84

REFERENCES .. 86

APPENDICES ... 95

RESEARCH OUTPUTS .. 135

xi

LIST OF TABLES

Table 1: Total number of data collected .. 39

Table 2: A summary of removing duplicates ... 39

Table 3: The CNN model training hyperparameters .. 43

Table 4: Data distribution for the CNN model .. 45

Table 5: Mask R-CNN model training hyperparameters ... 47

Table 6: Data distribution for the U-NET model ... 49

Table 7: The mobile application’s functional requirements and their description 58

Table 8: Non-functional requirements for the mobile application and their description 60

Table 9: The CNN model performance for detecting banana diseases 67

Table 10: CNN model training time .. 68

Table 11: Model loss results .. 70

Table 12: Model evaluation metric results... 72

Table 13: Model training time ... 74

Table 14: Results of the responses given by farmers to the mobile application validation

questionnaire ... 80

xii

LIST OF FIGURES

Figure 1: Different stages in which Black Sigatoka develop and affect the banana leaves ... 8

Figure 2: Damage caused by Fusarium Wilt on banana plants (a) How Fusarium Wilt affects

the banana stack (b) How Fusarium Wilt affects banana leaves 9

Figure 3: The CNN architecture illustration .. 10

Figure 4: Example of different filters applied to the same input image 12

Figure 5: An example of the convolutional filter being used to transform an input feature map

into an output feature map .. 13

Figure 6: An example of padding the input matrix with zeros around the border so as to

enhance the output feature map size ... 14

Figure 7: An illustration of the application ReLU operation ... 15

Figure 8: Max Pooling illustration (Moroney, 2021) ... 15

Figure 9: Assessed Mask R-CNN model architecture ... 16

Figure 10: Mask R-CNN ResNet backbone (Zhang, 2021) ... 17

Figure 11: Region proposal network (Zhang, 2021) .. 17

Figure 12: RoI Align (Zhang, 2021) .. 18

Figure 13: The Object detection head (Zhang, 2021) .. 18

Figure 14: The Mask generation head (Zhang, 2021) .. 19

Figure 15: Extracting a feature map from an input image using VGG16 20

Figure 16: The RoI target with coordinate size ... 20

Figure 17: The RoI on the feature map (Erdem, 2020) .. 21

Figure 18: Pooling layer (Erdem, 2020) .. 21

Figure 19: Quantization when mapping and pooling (Erdem, 2020) 22

Figure 20: The RoI pooling quantization losses (shown by the light and dark blue colors) and

data gain (represented by the green color) (Erdem, 2020) 22

Figure 21: The RoI box size (Erdem, 2020) .. 23

Figure 22: The RoI divided into equal boxes (Erdem, 2020) .. 23

Figure 23: Sampling points distribution (Erdem, 2020) .. 23

xiii

Figure 24: Bilinear interpolation for the (a) first point, (b) second point, (c) third point, and

(d) fourth point (Erdem, 2020) ... 24

Figure 25: Max Pooling on first box (Erdem, 2020) ... 25

Figure 26: The RoIAlign pooling output (Erdem, 2020) ... 25

Figure 27: The RoIAlign full size (Erdem, 2020).. 26

Figure 28: The U-Net architecture ... 27

Figure 29: A convolutional operation yielding a many-to-one relationship 28

Figure 30: A transpose convolution yielding a one-to-many relationship 28

Figure 31: A 4x16 convolution matrix... 28

Figure 32: How a convolution matrix is formed .. 29

Figure 33: Converting our input matrix from 4x4 to a column vector 16x1 29

Figure 34: A convolution operation ... 30

Figure 35: A transposed convolution operation ... 31

Figure 36: Technology acceptance model (Lai, 2017) .. 32

Figure 37: Data collection in the field ... 38

Figure 38: Examples of images from the dataset ... 38

Figure 39: How VisiPics was used to detect and delete duplicates 40

Figure 40: How Bulk Rename Utility was used to rename images in the dataset 40

Figure 41: How LabelMe was used to manually annotate images (a) Annotation of a healthy

banana leaf image; (b) Annotation of a banana leaf image affected by Black

Sigatoka disease; and (c) Annotation of a banana stalk image affected by Fusarium

Wilt disease ... 41

Figure 42: The Image annotation outputs (a) Original image (b) Drawing a polygon around

the area on a leaf image affected by Black Sigatoka (c) Saving the annotation in

JSON format (d) Visualizations of the labels (e) Extraction of the mask in PNG

format ... 42

Figure 43: The research framework ... 42

Figure 44: The TensorFlow Lite suite (Moroney, 2021) ... 57

xiv

Figure 45: Use case diagram for the banana diseases detection mobile application 61

Figure 46: Activity diagram for the banana diseases detection mobile application 62

Figure 47: Sequence diagram for the capture/upload image use case 62

Figure 48: Example of backbone feature maps at the (a) input layer (b) res2c_out activation

layer, and (c) res3c_out activation layer .. 64

Figure 49: Examples of RPN anchors (a) Regions of Interest (ROIs), (b) Negative anchors,

and (c) Positive anchors ... 65

Figure 50: Original image, ground truth from the mask and the mask overlaid on the original

image ... 65

Figure 51: Data augmentation applied equally on the image and its mask 66

Figure 52: Performance for the CNN model.. 67

Figure 53: Examples of how the Mask R-CNN model predicts segmentations (a) Image

segmentation of a leaf affected by Black Sigatoka disease: and (b) Image

segmentation of a leaf affected by Fusarium Wilt disease 68

Figure 54: Loss over epoch graph for U-Net group 8 model ... 71

Figure 55: Intersection over Union over epoch graph for U-Net group 8 model 73

Figure 56: Dice coefficient over epoch graph for U-Net group 8 model 73

Figure 57: Segmentation predictions from the U-Net model ... 75

Figure 58: Banana disease detection mobile application splash screen and detect page in

English and Kiswahili ... 76

Figure 59: Banana disease detection mobile application detect page with detection results for

Fusarium Wilt and mitigation recommendation page for the detected disease 77

Figure 60: Banana disease detection mobile application detect page with detection results for

Black Sigatoka and mitigation recommendation page for the detected disease ... 78

Figure 61: Banana disease detection mobile application detect page with results for a healthy

banana leaf and an image that is not of a banana leaf or stalk 78

Figure 62: Banana disease detection mobile application about banana page and about diseases

page ... 79

xv

LIST OF APPENDICES

Appendix 1: Questions that Were Used to Come Up with the Functional and Non-Functional

Requirements .. 95

Appendix 2: Mobile Application Validation Questionnaire .. 96

Appendix 3: Mask R-CNN Model Source Code ... 98

Appendix 4: The U-Net Model Source Code .. 108

Appendix 5: The CNN Model Source Code .. 113

Appendix 6: Model Deployment Flutter Source Code .. 117

Appendix 7: Poster Presentation .. 136

xvi

LIST OF ABBREVIATIONS AND SYMBOLS

AI Artificial Intelligence

AI4D Artificial Intelligent for development

API Application Programming Interface

BLSD Black Leaf Steak Disease

CNN Convolutional Neural Network

COCO Common Objects in Context

DL Deep learning

DSA Data Science Africa

FAO Food and Agriculture Organization

FAOSTAST Food Agricultural Organization Statistics

Faster R-CNN Faster Region-based Convolutional Neural Network

GB Giga Bytes

GDP Gross Domestic Product

GPU Graphical Processing Unit

HOG Histogram of Oriented Gradients

IDE Integrated Development Environment

IDRC International Development Research Centre

IoU Intersection Over Union

ISBI International Symposium on Biomedical

KNN K-nearest neighbor

LBP Local Binary Pattern

mAP Mean Average Precision

Mask R-CNN Mask Region-based Convolutional Neural Network

ML Machine Learning

NM-AIST Nelson Mandel African Institution of Science and Technology

xvii

ODK Open Data Kit

ReLU Rectified Linear Unit

ResNet Residual Network

RGB Red, Green, and Blue

RoI Region of Interest

RoIAlign Region of Interest Alignment

RPN Region Proposal Network

SDG Sustainable Development Goal

SVM Support Vector Machine

TP True Positive

URL Uniform Resource Locator

UUV Unmanned Underwater Vehicles

VGG Visual Geometry Group

XP eXtreme Programming

1

CHAPTER ONE

INTRODUCTION

1.1 Background of the Problem

The United Nations’ 2nd Sustainable Development Goal (SDGs) is to “End hunger, achieve

food security and improved nutrition, and promote sustainable agriculture” (United Nations,

2021). This goal cannot be achieved without good approaches such as the use of artificial

intelligence in crop disease management and proper structured resource utilization. According

to reports (Che’Ya et al., 2022), farmers are capable of automatically identifying and

detecting infections and diseases early on, which helps to lessen their effects, enhance

treatment results, and stop infections from recurring in agriculture.

According to the 2020 economic survey report, agriculture generated 26.9% of Tanzania's

Gross Domestic Product (GDP), making it a significant economic sector (National Bureau of

Statistics et al., 2021). However, crop diseases have been the greatest challenge affecting major

food security crops, including bananas. Nearly 70 million farmers grow bananas in the humid

and sub-humid tropics of Africa, making it one of the main staple foods and cash crops that are

mainly grown by small-scale farmers (FAO, 2021). Regardless of its importance in household

food security and subsistence, this crop is highly attacked by diseases, particularly Fusarium

Wilt and Black Sigatoka (Sanga et al., 2020; Ramadhani, 2017). It is reported that yield losses

due to Fusarium Wilt and Black Sigatoka diseases in bananas range from 30% to 100% in

susceptible cultivars and highly susceptible respectively (Bubici et al., 2019; Vézina & Van-

den-Bergh, 2020; FAO, 2017).

Black Sigatoka sometimes called Black Leaf Streak Disease (BLSD) is a leaf spot disease

caused by heterothallic and airborne fungus Pseudocercospora fijiensis. The fungus that causes

this disease was discovered in a Fiji island valley called Sigatoka, where it gets its name

(Vézina & Van-den-Bergh, 2020). Nevertheless, it is believed to have been common in the

Asia-Pacific region much earlier. The disease has been found in Taiwan, Philippines,

Indonesia, China, Vietnam, Malaysia, Singapore, and Thailand but in these countries, the

fungus is not found in all locations (Vézina & Van-den-Bergh, 2020). The Black Sigatoka

disease was initially confirmed to be in Gabon in Africa in 1980. The countries in West Africa

that have the diseases are Cameroon, Togo, Benin, Nigeria, Ghana, the Democratic Republic

of Congo, and Côte d'Ivoire. In 1987, Black Sigatoka was confirmed in East Africa on Pemba

2

Island in Tanzania. It spread to neighboring countries like Uganda, Kenya, Burundi,

Madagascar, Rwanda, Malawi, Comoros, Mayotte, and in East Africa. According to reports,

Black Sigatoka is most common in mid-altitude regions below 1350 meters above sea level.

Until recently, it was not seen above this altitude (Johanson et al., 2000). However, the fungus

has gradually adapted to higher and cooler altitudes (Erima et al., 2017).

Fusarium Wilt of bananas also called Panama disease is a destructive banana disease caused

by a soil-borne fungus known as Fusarium oxysporum f.sp. cubense race 1 (Foc). In Australia's

banana plantations, fusarium wilt disease was first identified in 1876 (Altendorf, 2019). It was

then confirmed in Panama in 1890 where it was an epidemic (Daly & Walduck, 2006).

Fusarium wilt, the first stain of the disease highly affected the susceptible Gros Michel banana

which dominated the banana trade globally in Central America. In 1950, the disease caused

the Cavendish type of banana to replace the Gros Michel banana type because Gros Michel

was highly affected by Fusarium wilt disease (Vézina, 2022). There are four strains or races of

Foc which are Race 1, Race 2, and Race 4 which infects bananas, and Race 3 which is a

pathogen for Heliconia spp instead of banana (Ploetz et al., 2015). This study focuses on

Fusarium Wilt Foc Race 1 which is the first stain of the disease.

In Tanzania, farmers are facing several challenges, including climate change, a lack of

agricultural tools, diseases, pest attacks, and the growth of weeds that cause damage to plants

and decrease yields. These challenges affect the prosperity of farmers as well as the nation’s

economy. It is therefore important to find and implement the appropriate and effective solutions

to the challenges to improve productivity. Artificial intelligence (AI) has propelled agricultural

solutions that enable early pest and plant disease detection, health assessment, crop monitoring,

early warning systems, and evaluation of tree canopy cover, etc. Several studies have been

done that assessed deep learning models for detecting crop diseases in plants (Sanga et al.,

2020; Ramcharan et al., 2017; Mkonyi et al., 2020; Loyani, 2021). However, to the best of the

author's knowledge, the segmentation of Black Sigatoka and Fusarium Wilt banana diseases

has not been addressed.

Early disease detection using automatic plant disease detection techniques is beneficial. The

automatic detection of plant diseases by capturing symptoms as features on plant leaf images

is easier, less time-consuming, and less prone to errors when compared to disease detection

through simple naked-eye observation done by farmers and experts. Deep learning can be used

to automate the detection of plant diseases. By identifying the colour difference in the diseased

3

area, deep-learning image processing identifies the region of the leaf image that is affected by

the disease. The region of interest (i.e., the area in the image of the banana plant affected by

the disease) can be identified using a mask provided by image segmentation. Different

properties of a picture, such as colour, boundaries, shapes, and texture, are used to segment the

region of interest (Singh, 2017). This study developed an early detection mobile application

for banana diseases deploying the CNN deep learning model. The mobile application will

enable small-holder farmers to quickly detect banana plant diseases to intervene early.

Furthermore, the study generated a banana image dataset that was shared on machine learning

open-access repositories to facilitate research and teaching at different initiatives in Africa and

globally.

1.2 Statement of the Problem

Despite government efforts to set aside funds each year for the growth and development of the

agricultural sector, farmers continue to face issues that result in plant damage and decreasing

plant yields. Diseases like Fusarium Wilt and Black Sigatoka affect the banana plant and lead

to a decrease in plant yields. Most local banana farmers use simple naked-eye observation done

by the farmers themselves and the agricultural experts to detect the presence of diseases on the

plants, which is cumbersome, costly, prone to errors, and time-consuming. The current state of

plant disease diagnosis is transitioning from disease identification using visible symptoms by

the eyes to the use of automatic, data-driven solutions applying deep learning and computer

vision techniques, which are easier and cheaper.

Deep learning has been applied in several studies to identify tomato diseases (Mkonyi et al.,

2020; Shijie et al., 2017; Loyani, 2021); cassava diseases (Nabenda et al., 2020; Ramcharan

et al., 2017); and banana diseases (Sanga et al., 2020; Owomugisha et al., 2014). The goal of

this research was to create a deep-learning image segmentation model for the early

identification of banana diseases. Deployment of the model was done in a mobile application

to enhance its usability by the farmers. The developed mobile application also provided

recommendations for curing banana diseases.

1.3 Rationale of the Study

The agriculture sector is essential to a nation's economy because it produces food, one of

humanity's most fundamental requirements, goods for export to earn foreign currency, and raw

materials for manufacturing. Bananas among the staple food and cash crops are highly

4

produced in many countries, including Tanzania. This crop has great potential to mitigate the

presence of food insecurity and alleviate poverty and hunger, especially in developing

countries. In Tanzania, a total of 20 735 banana-growing smallholder farmers were reported to

have banana disease occurrences in 2011 (Sanga, 2020). The damage being caused by the

diseases on banana plants continuously, negatively affects farmers by causing loss of yields

and the economy of the country through loss of income. Farmers now need to be able to identify

diseases early in the plant and be knowledgeable about the best ways to control the diseases

due to the rise in banana yield loss that they are experiencing. This study, therefore, developed

an early-detection mobile application for banana diseases. The study trained deep learning

models from a dataset of images of banana leaves and stalks using image segmentation and

classification methods. A CNN deep learning model was deployed in a mobile application and

could advise farmers and extension officers on the most effective ways to reduce the effects of

the diseases.

1.4 Objectives

1.4.1 General Objective

To develop an image segmentation deep learning model for early detection of banana diseases.

1.4.2 Specific Objectives

The study aimed to achieve the following specific objectives:

(i) To identify the requirements for developing the image segmentation deep learning

model

(ii) To develop an image segmentation deep learning model for detecting banana diseases.

(iii) To deploy the developed model in a mobile-based application.

(iv) To validate the performance of the developed mobile-based application.

1.5 Research Questions

The study intended to answer the following questions:

(i) What are the requirements for developing the image segmentation deep learning model?

5

(ii) How can an image segmentation deep learning model be developed to detect banana

diseases?

(iii) How can we deploy a deep learning model in a mobile-based application?

(iv) How can the performance of the developed mobile-based application be validated?

1.6 Significance of the Study

The objective of this study was to solve the challenges faced by farmers and agricultural experts

when they try to manually detect diseases in farms using naked-eye observation by developing

a mobile-based application for detecting banana diseases. This mobile application deployed a

classification deep learning model to accurately identify banana diseases for farmers.

The developed mobile-based application accurately detects the presence of banana diseases

early and provides information on recommended steps to take and cures to use for the detected

diseases on the plant, allowing the plant to be cured before diseases have affected the entire

plant and rendering mitigation efforts ineffective. This will help improve the banana yields for

farmers by saving the infected plants from diseases early and causing them to produce banana

fruits.

The solution developed by this study will play a role in achieving the United Nations’ 2nd SDG,

which is to “End hunger, achieve food security and improved nutrition, and promote

sustainable agriculture” (United Nations, 2021). By early recommending treatments to banana

plants afflicted by diseases, the created application will also contribute to achieving food

security by enabling smallholder farmers to save the plants and produce bananas for

consumption, sale, and export.

1.7 Delineation of the Study

This study focused on developing a mobile application for identifying Black Sigatoka and

Fusarium Wilt fungal banana diseases because they cause high yield losses. The dataset used

to develop the mobile application comprised of coloured images, that is, Red-Green-Blue

(RGB) colour format, collected from the farms and other images downloaded from the internet.

The experiment results show that the developed mobile application could accurately identify

the two diseases, healthy banana leaves, and other images not of the banana plant. Further

research could improve the performance of the mobile application and increase its ability to

6

identify more plant diseases and provide mitigation recommendations for the identified

diseases.

However, as part of the limitation this study only focused on identifying the two banana

diseases, healthy banana leaves, and images not of the banana leaves or stalks without including

dry banana leaves and other banana diseases. This factor may affect the accuracy of the

prediction done by the model.

7

CHAPTER TWO

LITERATURE REVIEW

2.1 Bananas

Bananas and plantains regarded as bananas are among the most widely produced perennial fruit

crops (Brown et al., 2017). Based on the report by the Food and Agricultural Organization

Statistics (FAOSTAT), in 2021 the annual global production of bananas was 124 million tons,

and 54.4% of these tones were produced in Asia, with India leading by producing 33 million

tons and Africa producing 22 million tons which is equivalent to 22.7% of the global

production (FAOSTAT, 2021). Bananas are among the most traded fruits globally (Voora et

al., 2020). Green bananas are the primary source of carbohydrates for around 30% of

Tanzanians (Suleiman, 2018). They provide a sustainable source of food supply because they

produce fruits throughout the year. Bananas can be eaten fresh as fruits, fried, cooked, and

processed to make juice, beer, and baby food (Daniel, 2016). Ripe bananas are a cheap source

of energy, vitamins, and potassium. Cooking bananas is an essential meal for millions of people

(Voora et al., 2020). Despite their many advantages, bananas are highly infected by diseases,

including Fusarium Wilt and Black Sigatoka fungal diseases (Sanga et al., 2020).

2.2 Black Sigatoka

The symptoms of Black Sigatoka disease normally start 10 to 14 days after infection by having

small and pale-yellow spots on young banana leaves (Soares et al., 2021). Within a few days,

the spots enlarge to a few centimetres, turn brown, and have light grey centers, and then the

tissue surrounding the lesions deteriorates and turns yellow as these patches spread (Soares et

al., 2021). This leads to the entire leaf becoming brown which interferes with photosynthesis

and eventually, the leaf dies as lesions combine. The disease causes uneven and premature

ripening of the banana fruit. Production of conidia and ascospore at stages 2 to 4 and 5 to 6

occurs respectively. Black Sigatoka disease affects all banana varieties, with a few exceptions

that are tolerant to the disease, including the recently released Taliban 1-4 species (Shimwale,

2021). Conidia and ascospores can become windborne in diseased plantations and move up to

tens of kilometres from the site of the disease, but ascospores are more crucial to the

epidemiology of the disease's transmission by windborne dispersal. However, exposure to

sunlight's UV rays seems to limit the long-distance airborne dissemination of viable spores.

Dew, rain, and irrigation splashes are ways in which water can spread the disease over short

8

distances (Churchill, 2010; Muimba-Kankolongo, 2018). The disease can be controlled using

weekly fungicide applications (Vézina & Van-den-Bergh, 2020). It is recommended to

alternate protectants and systemic fungicides to delay or manage fungicide resistance.

Production of resistant strains to fungicides is a common phenomenon that makes the

management of this disease to be complicated (Isaza et al., 2016). Again, it is difficult for

smallholder farmers to control the disease due to fragmented farms (Isaza et al., 2016).

Therefore, early detection of the disease is important for its proper management.

Black Sigatoka affects the banana plant leaf in six different stages. Stage 1 appears as little,

yellowish dots that are below 1 mm in size on the underside of the leaf. Stage 2 appears as red

or brown streaks first on the leaf's underside, then on its upper side. On the leaf’s upper surface,

the streak will progressively turn black. The streaks’ diameters get longer and larger in stage

3. Stage 4 appears as a brown stain on the leaf's bottom surface and a black spot on the leaf's

upper surface. The spot seems circular or elliptical. The first necrotic stage is stage 5. The stain

has reached the underside of the leaf blade and is entirely black with a yellow halo surrounding

it. In stage 6, the center of the spot becomes light grey, dries out, and is surrounded by a

prominent black ring and a light-yellow halo. These marks are still noticeable after the leaf has

dried out because the ring remains persistent (Vézina & Van-den-Bergh, 2020). Figure 1 shows

the different stages in which Black Sigatoka affects the banana leaves.

(1) (2) (3)

(4) (5) (6)

Figure 1: Different stages in which Black Sigatoka develop and affect the banana leaves

9

2.3 Fusarium Wilt

Fusarium Wilt infection starts in the roots where the fungal spores (Chlamydospores,

macroconidia, and microconidia) infect the roots of banana plants and then spread in the corm

(Vézina, 2022). Fusarium Wilt symptoms show on the older leaves to wilt and become yellow

then the new leaves follow (Viljoen et al., 2016; Jackson, 2014). As the illness advances, the

yellowed, wilted leaves eventually collapse, forming a covering of dead leaves surrounding the

pseudostem of the banana plant (Altendorf, 2019). This continues until all the leaves fall and

dry up, at which point the plant dies. The splitting of the pseudostem's base is another common

sign (Viljoen et al., 2016; Jackson, 2014). Figure 2 shows the effects of Fusarium wilt on

banana stalks and leaves. The dying bananas release chlamydospores. These spores can survive

as endophytes in the soil for more than 30 years, multiplying in various hosts like weeds

(Vézina & Rouard, 2021). Chemical pesticides and fungicides cannot be used to control the

fungus. The easiest way to ensure that bananas can be grown is to plant resistant cultivars on

affected soil or to start plantations on unaffected land (Vézina, 2022). Banana varieties that are

highly susceptible to Fusarium Wilt disease are Mchare, Sukari Ndizi, all kinds of Pisang

species, and Kayinja (Jomanga et al., 2022; Jomanga & Lucas, 2021). The movement of

contaminated planting materials, furrow irrigation, surface runoff water, and diseased soil are

common ways that the soil-borne fungus is disseminated (Jackson, 2014). The spread may also

be facilitated by contaminated soil on vehicles, tools, and shoes (Daly & Walduck, 2006;

Altendorf, 2019).

 a b

Figure 2: Damage caused by Fusarium Wilt on banana plants (a) How Fusarium Wilt

affects the banana stack (b) How Fusarium Wilt affects banana leaves

10

2.4 Deep Learning Models and Feature Extraction

Deep learning is a subset of machine learning that trains a computer to make decisions like

human beings by learning from examples (Ral, 2020). Deep learning is mainly used with

unstructured datasets like images, videos, audio, texts, sensors, and time series data. With these

datasets, deep learning can solve problems like image identification and object detection using

images and video datasets, solve speech recognition problems using the audio dataset, solve

natural language processing problems like question answering, machine translation, sentiment

analysis, and text classification using text dataset, as well as analyze sensor data and time series

data. With image datasets, deep learning can be used in object localization like image

segmentation and object detection, or in image classification. In this study, a convolutional

neural network model was trained for classification, and Mask R-CNN and U-Net models were

trained for instance and semantic segmentation tasks respectively. Feature extraction is done

automatically by deep learning models. This section discusses the architectures and feature

extraction done by the models assessed in this study.

2.4.1 Convolutional Neural Network Feature Extraction

The two stages of the CNN model’s operation are feature extraction and classification. Figure

3 shows the entire process of a CNN model.

Figure 3: The CNN architecture illustration

After the feature extraction phase, which involved using numerous filters and layers to extract

information and characteristics from the images, the images were categorized in the

classification stage by their classes.

11

The feature extraction process includes the following:

(i) Input layer

(ii) Convolution layer and activation function

(iii) Pooling layer

The output feature maps from the feature extraction process are run in a flattened layer before

being fed into the fully connected layer or dense layer. The classification phase includes the

fully connected layer and activation function.

(i) Input Layer

The input images are coloured (red, green, and blue) (RGB). Each image has pixels that range

from zero to 255. Before introducing the images to the model, they were normalized by

converting them to a range of zero to one. Input images were resized to 512x512. Therefore,

the input shape was 512x512x3, where 3 is the colour channel.

(ii) Convolution Layer

Multiple filters were applied to the input image in a convolution layer to extract its features.

Each filter was applied to all parts of the image to extract feature maps that help classify the

image. Figure 4 shows examples of different filters applied to the same input image.

12

-0.2 0 1

-1.6 0 1

-0.2 0 1

0.062 0.125 0.062

0.12 0.25 0.12

0.062 0.125 0.062

-1 -1 -1

-1 8.1 -1

-1 -1 -1

-2 -1 0

-1.1 1 1

0 1 2.1

1 0 -1

2 0.1 -2

1 0 -1

Figure 4: Example of different filters applied to the same input image

13

2 3 5 9 7

1 2 3 4 6

2 4 5 7 2

9 3 4 6 8

1 8 5 3 1

1 0 1

1 1 0

0 0 1

 15 24 21

14 21 29

24 21 18

2 3 5 9 7

1 2 3 4 6

2 4 5 7 2

9 3 4 6 8

1 8 5 3 1

1 0 1

1 1 0

0 0 1

 15 24 21

14 21 29

24 21 18

2 3 5 9 7

1 2 3 4 6

2 4 5 7 2

9 3 4 6 8

1 8 5 3 1

1 0 1

1 1 0

0 0 1

 15 24 21

14 21 29

24 21 18

2 3 5 9 7

1 2 3 4 6

2 4 5 7 2

9 3 4 6 8

1 8 5 3 1

1 0 1

1 1 0

0 0 1

15 24 21

14 21 29

24 21 18

Input Feature Map Convolutional

Filter

Calculation Output Feature

Map

Figure 5: An example of the convolutional filter being used to transform an input

feature map into an output feature map

Figure 5 illustrates the process of applying a 3 x 3 convolutional filter to the entire input image

to create an output feature map. Depth relates to how many filters were applied during the

convolution operation. For example, in Fig. 4, there is an example of five filters being applied

to the same input image, resulting in five different output feature maps. The depth in Fig. 4 was

five. As the number of filters increased, more accurate results were obtained. The stride refers

to how many pixels our filter matrix slides over the input matrix. A stride of one means that

2+0+5+1+2+0+0+0+5

3+0+9+2+3+0+0+0+7

5+0+7+3+4+0+0+0+2

1+0+3+2+4+0+0+0+4

14

the filter moves over one pixel every time. A stride of two indicates that the filter jumps two

pixels at a time as it slides around the input matrix. The feature maps get smaller as the stride

gets bigger. In Fig. 5, a stride of one is used. There are occasions when it is desirable to pad

the input matrix with zeros around the border to use the filter to the bordering sections of our

input image matrix. The benefit of zero padding is that it enables us to control the size of the

output feature maps. Not using zero padding is referred to as a "narrow convolution" while

zero padding is often referred to as a "wide convolution."

Figure 6 shows an example of adding zero padding to an input image. Adding zero-padding in

Fig. 6 results in an output feature map with the same size as the input feature map, which is

5x5. While the same 3x3 filter was used in Fig. 5, the lack of zero-padding on the input image

resulted in an output feature map of size 3x3.

0 0 0 0 0 0 0

0 2 3 5 9 7 0

0 1 2 3 4 6 0

0 2 4 5 7 2 0

0 9 3 4 6 8 0

0 1 8 5 3 1 0

0 0 0 0 0 0 0

Input

5 x 5

Filter

3 x 3

Output

5 x 5

Figure 6: An example of padding the input matrix with zeros around the border so as

to enhance the output feature map size

The Rectified Linear Unit (ReLU) activation function was used on every convolution operation.

It is a function that replaces all negative numbers with zero and returns a number if it is larger

than zero. The ReLU helps us prevent the transmission of negative values to the following

layer, which can affect the summing function. Figure 7 shows how the ReLU activation

function is applied, and replaces all the negative numbers with zero.

-2 3 5 9 -7

1 2 -3 4 6

2 -4 5 -7 2

9 3 4 6 -8

-1 8 5 3 1

 0 3 5 9 0

1 2 0 4 6

2 0 5 0 2

9 3 4 6 0

0 8 5 3 1

ReLU

15

Figure 7: An illustration of the application ReLU operation

(iii) Pooling Layer

The pooling layer, which reduces the dimensionality of each feature map while preserving the

most crucial features, is also known as down-sampling or subsampling. Pooling is also

described as the method that minimizes the number of pixels in your image while preserving

its semantics. The kinds of pooling include Max, Average, and Sum pooling. Figure 8 shows

the process of max pooling. The left-hand box in Fig. 8 could represent the pixels in a black-

and-white image. The pixels are further grouped into 2x2 arrays, so from 16 pixels, 4 groups

of 2x2 arrays are obtained. The groups are called pools. Then, the maximum value (Max

Pooling) is chosen in each group, and those values are put back together to create a new image.

Sum pooling takes the total of all the values in each group, average pooling takes the average

value from the groups. As a result, the pixels on the left image are decreased by 75% (from 16

to 4), and the new image is made up of the maximum value from each pool (Moroney, 2021).

Figure 8: Max Pooling illustration (Moroney, 2021)

2.4.2 Mask Region-Based Convolutional Neural Network Model for Instance

Segmentation

Instance segmentation merges the objectives of object detection which aims to classify each

object and locate it with a bounding box and semantic segmentation whose goal is to classify

each pixel into predefined categories without distinguishing object instances. In addition to the

classification and bounding box regression branches, the Mask Region-based Convolutional

16

Neural Network is a Faster R-CNN extension that includes a segmentation mask predicting

branch on every region of interest (He et al., 2018). For each object, Faster R-CNN returns a

bounding box and its class label with a confidence score (Ren et al., 2016). Mask R-CNN

works more efficiently in instance segmentation because it decouples mask and class prediction

(He et al., 2018).

(i) Mask Region-Based Convolutional Neural Network Model Architecture

Figure 9 depicts the architecture of the Mask R-CNN model.

Figure 9: Assessed Mask R-CNN model architecture

Backbone

Backbone is the primary feature extractor of Mask R-CNN. Residual networks (ResNets) with

or without feature pyramid network (FPN) are frequently used for this component. When data

from an image is introduced into a ResNet backbone, it must first pass through several

bottleneck blocks before it can be converted into a feature map. Figure 10 illustrates a ResNet

backbone.

17

Figure 10: Mask R-CNN ResNet backbone (Zhang, 2021)

Region proposal network

The function known as the Region Proposal Network (RPN) scans the feature map from the

backbone and suggests regions that might contain objects of interest, i.e., Regions of Interest

(ROI). Figure 11 shows the process of the RPN.

Figure 11: Region proposal network (Zhang, 2021)

Region of interest alignment

Based on the Regions of Interest (RoIs) suggested by the Region Proposal Network (RPN),

Region of Interest alignment (RoIAlign) extracts feature vectors from a feature map and

18

converts them into a fixed-sized tensor for further processing. Scaling is used by RoIAlign to

match RoI with their corresponding locations on the feature map. The following

parallel branches for object detection and mask generation process the resulting RoI's finer

feature map. Figure 12 illustrates RoI Align.

Figure 12: RoI Align (Zhang, 2021)

Object detection branch

An individual RoI object category and a more precise instance bounding box can be predicted

based on the individual RoI feature map. Figure 13 shows the object detection head.

Figure 13: The Object detection head (Zhang, 2021)

Mask generation branch

A transposed convolutional layer and a convolutional layer on the mask-generating branch are

progressively fed the RoI feature map. This is a fully convolutional network branch. For one

19

class, a single binary segmentation mask was generated. The output mask was then selected

based on the class prediction made by the object detection branch. This aids per-pixel mask

prediction in preventing competition between multiple classes. Figure 14 illustrates the mask

generation head.

Figure 14: The Mask generation head (Zhang, 2021)

(ii) Mask Region-Based Convolutional Neutral Network Feature Extraction

As discussed in the Mask R-CNN architecture section in the Backbone subsection, the

Backbone is the main feature extractor of Mask R-CNN. Data is routed through numerous

bottleneck blocks as images are supplied into the ResNet backbone before being transformed

into a feature map. As illustrated in Fig. 10, to make up a deep residual network, several

residual bottleneck blocks were stacked. In a bottleneck block, input passes in two directions:

the multiple convolutional layers and the other identical shortcut connection. Their outputs are

then added element-wise. The feature map from the final backbone’s convolutional layer

comprises abstract information about an image, which includes different object instances, their

classes, and spatial attributes (Zhang, 2021). Because the residual bottleneck blocks in the

ResNet backbone comprise convolutional layers, the feature extraction done in this part will

be discussed in the CNN feature extraction.

As illustrated in Fig. 11, in the Region Proposal Network (RPN), the backbone’s output feature

map was processed by a convolutional layer, which generates a c-channel tensor who’s each

spatial vector (also having c-channels) is associated with an anchor center. A set of anchor

boxes with varied scales and aspect ratios are formed from a single anchor center. The anchor

boxes are different regions that are evenly spaced throughout the entire image and fully encircle

it. The c-channel tensor is then processed by two siblings 1x1 convolutional layers. One is a

20

binary classifier that predicts if each anchor box contains an object. Each c-channel vector is

mapped to a k-channel vector (represents k anchor boxes with various scales and aspect ratios

sharing one anchor center). The second is an object-bounding box regressor. It predicts the

offsets between the anchor box and the true object bounding box. Each c-channel vector is

mapped into a 4K-channel vector. The bounding boxes with the highest objectness score are

selected out of any overlapped bounding boxes that might suggest the same object and discard

the others. This is the non-max suppression process (Zhang, 2021).

RoIAlign is the step that finds out exactly where each RoI from RPN is in the feature map.

Imagine that our model translates a 512x512x3 (width, height, and RGB) input image into a

16x16x512 feature map with a scale factor of 32 using VGG16 (Fig. 15).

Figure 15: Extracting a feature map from an input image using VGG16

Then a single proposed RoI (145x200 box) was used and mapped onto the feature map (Fig.

16).

Figure 16: The RoI target with coordinate size

Since certain of the dimensions of objects cannot be divided by 32, RoI (not align) was placed

with our grid (Fig. 17).

21

Figure 17: The RoI on the feature map (Erdem, 2020)

As an example, the pooling layer is specified to be of size 3x3, so the output shape is 3x3x512,

as seen in Fig. 18.

Figure 18: Pooling layer (Erdem, 2020)

Region of Interest Alignment is a quantization-free layer applied by Mask R-CNN to faithfully

preserve exact spatial locations. This is an improvement to RoIPool, which was used by Faster

R-CNN. The RoIPool does coarse spatial quantization for feature extraction (He et al., 2018).

RoIPool's quantization technique restricts input from real numbers to integers (Erdem &

Kemal, 2020). Two types of quantization are applied by Fast R-CNN. The mapping process

does the first quantization then the pooling process does the second quantization (Fig. 19). The

problem with the quantization used in RoI Pooling is that it generates a great loss of data as

shown in Fig. 20. Every time quantization is done, a part of the information regarding the object

of interest (RoI) goes missing.

22

Figure 19: Quantization when mapping and pooling (Erdem, 2020)

Figure 20: The RoI pooling quantization losses (shown by the light and dark blue colors)

and data gain (represented by the green color) (Erdem, 2020)

In RoIAlign, the quantization process was skipped by partitioning the original RoI into nine

boxes of the same size and using bilinear interpolation inside each one, as illustrated in Fig. 21.

The pooling layer’s size and the mapped RoI together define the size of each box. Considering

that a 3x3 pooling layer is utilized, the mapped RoI (6.25x4.53) was divided by three. This

results in a rectangle with a width of 2.08 and a height of 1.51.

23

Figure 21: The RoI box size (Erdem, 2020)

Figure 22 shows how our RoI is divided into boxes.

Figure 22: The RoI divided into equal boxes (Erdem, 2020)

In Fig. 22, the top left box covers six different grid cells. Part of the data must be sampled to

extract value for the pooling layer. Four sampling points were established inside that box to

sample the data, as shown in Fig. 23.

Figure 23: Sampling points distribution (Erdem, 2020)

24

The points are calculated by dividing the box's height and width by 3. After obtaining all the

points, Bilinear interpolation is applied to the sample data from this box. In image processing,

bilinear interpolation is frequently employed to sample colors using the equation below:

𝑃 ≈
𝑦2 − 𝑦

𝑦2 − 𝑦1
(

𝑥2 − 𝑥

𝑥2 − 𝑥1
𝑄11 +

𝑥 − 𝑥1

𝑥2 − 𝑥1
𝑄21) +

𝑦 − 𝑦1

𝑦2 − 𝑦1
(

𝑥2 − 𝑥

𝑥2 − 𝑥1
𝑄12 +

𝑥 − 𝑥1

𝑥2 − 𝑥1
𝑄22)

Figure 24 shows the bilinear interpolation for the sampling points.

(a) (b)

(c) (d)

Figure 24: Bilinear interpolation for the (a) first point, (b) second point, (c) third point,

and (d) fourth point (Erdem, 2020)

Max Pooling is used once all the points have been determined, as shown in Fig. 25.

25

Figure 25: Max Pooling on first box (Erdem, 2020)

Data are pooled from the entire RoI using RoIAlign as illustrated in Fig. 26.

Figure 26: The RoIAlign pooling output (Erdem, 2020)

Region of Interest Alignment pooling is applied for every layer until a result containing 512

layers is obtained as feature map input, as seen in Fig. 27. In RoIAlign, using bilinear

interpolation, data is extracted from all cells in the feature map inside the RoI even though

sampling points are not placed in all cells (Erdem, 2020).

26

Figure 27: The RoIAlign full size (Erdem, 2020)

2.4.3 The U-Net Model for Semantic Segmentation

Semantic segmentation assigns a class to each pixel in an image. It does not separate different

instances of the same class. The U-Net model was used for semantic segmentation. The U-Net

gains end-to-end image segmentation skills by receiving a raw image and producing a ready

segmentation map (Ronneberger, 2015). The foundation of U-Net is a fully convolutional

network (Long et al., 2015). The U-Net extends the fully convolutional network architecture

to use a few annotated training images (relying excessively on the use of data augmentation)

and still yields precise segmentations (Ronneberger et al., 2015).

(i) The U-Net Model Architecture

The U-Net is comprised of a large number of small operations, shown by small arrows, as

illustrated in Fig. 28. Feature maps were represented in blue boxes. The left side of the U-

shaped U-Net architecture is known as the contracting path while the right side is the expansive

path (Ronneberger et al., 2015).

27

Figure 28: The U-Net architecture

(ii) The U-Net Feature Extraction

The contraction path on the right-hand side of the U-Net architecture follows a standard

convolutional network. The feature extraction done in the convolutional network in the

contracting path is discussed in the CNN feature extraction. The expansive path is made up of

a series of up-convolutions. Up-convolutions are also referred to as transposed convolutions,

which are used in up-sampling. The operations in a transposed convolution are similar to the

operations in a normal convolution but go backward. This results in up-sampling an image

from low resolution to high resolution. A convolutional operation produces a many-to-one

relationship, i.e., the nine input matrix values are connected to one output matrix value for a

3x3 convolutional filter. Figure 29 shows the many-to-one relationship produced by a

convolution operation. A transposed convolution goes backward from the operation illustrated

in Fig. 29. A transposed convolution connects one value in an input matrix to nine values in

the output matrix for a 3x3 convolution filter. A transposed convolution gives a one-to-many

relationship. Figure 30 shows the one-to-many relationship yielded by a transpose convolution

as it does up-sampling.

28

4 5 8 7

1 8 8 8

3 6 6 4

6 5 7 8

1 4 1

1 4 3

3 3 1

122 148

126 134

High-Resolution

Input Feature Map

Convolutional

Filter

Calculation Low-Resolution

Output Feature

Map

Figure 29: A convolutional operation yielding a many-to-one relationship

2 1

4 4

1 4 1

1 4 3

3 3 1

2 9 6 1

6 29 30 7

10 29 33 13

12 24 16 4

Low-Resolution

Input Feature Map

Convolutional

Filter

 High-Resolution

Output Feature Map

Figure 30: A transpose convolution yielding a one-to-many relationship

In Fig. 30, an attempt is made to up-sample a matrix of size 2x2 matrix to a matrix of size 4x4.

The one-to-nine relationship is maintained. The transpose convolution operation done in Fig.

30 can be explained by a convolution matrix and a transposed convolution matrix.

A convolution matrix is a convolution filter that has been reorganized so that convolution

operations can be produced through matrix multiplication. The 3x3 convolution filter (in red)

in Fig. 29 and 30 is rearranged into a 4x16 convolution matrix by adding zero padding. Figure

31 shows a 4x16 convolution matrix, while Fig. 32 illustrates how the convolution matrix is

formed.

1 4 1 0 1 4 3 0 3 3 1 0 0 0 0 0

0 1 4 1 0 1 4 3 0 3 3 1 0 0 0 0

0 0 0 0 1 4 1 0 1 4 3 0 3 3 1 0

0 0 0 0 0 1 4 1 0 1 4 3 0 3 3 1

Figure 31: A 4x16 convolution matrix

4+20+8+1+32+24+9+

18+6

29

1 4 1

1 4 3

3 3 1

1 4 1 0 1 4 3 0 3 3 1 0 0 0 0 0

Figure 32: How a convolution matrix is formed

The input matrix is flattened from 4x4 to a column vector of 16x1 to employ the convolution

matrix, as seen in Fig. 33.

4 5 8 7

1 8 8 8

3 6 6 4

6 5 7 8

4

5

8

7

1

8

8

8

3

6

6

4

6

5

7

8

Figure 33: Converting our input matrix from 4x4 to a column vector 16x1

As shown in Fig. 34, a convolutional operation is created by multiplying the 16x1 input matrix

by the 4x16 convolutional matrix.

30

1 4 1 0 1 4 3 0 3 3 1 0 0 0 0 0

0 1 4 1 0 1 4 3 0 3 3 1 0 0 0 0

0 0 0 0 1 4 1 0 1 4 3 0 3 3 1 0

0 0 0 0 0 1 4 1 0 1 4 3 0 3 3 1

4

5

8

7

1

8

8

8

3

6

6

4

6

5

7

8

122

148

126

134

Convolution Matrix (4x16) Input

Matrix

(16x1)

 Output

Matrix

(4x1)

Figure 34: A convolution operation

The output matrix in Fig. 34 can be transformed into a 2x2 matrix, producing the same outcome

as in Fig. 29.

When you transpose the convolution matrix (4x16) to create a (16x4) matrix, you acquire a

matrix known as a transposed convolution matrix. You can use the convolution matrix to go

from 16 (4x4) to 4 (2x2) because it is 4x16. Consequently, if you have a 16x4 transposed

convolutional matrix, you can move from 4 (2x2) to 16 (4x4). A transposed convolutional

matrix maintains the one-to-nine relationship as discussed before. Figure 35 illustrates the

operation of a transposed convolution. Figure 35 also explains the transposed convolution

X

31

operation that was given in Fig. 30.

1 0 0 0

4 1 0 0

1 4 0 0

0 1 0 0

1 0 1 0

4 1 4 1

3 4 1 4

0 3 0 1

3 0 1 0

3 3 4 1

1 3 3 4

0 1 0 3

0 0 3 0

0 0 3 3

0 0 1 3

0 0 0 1

2

1

4

4

2

9

6

1

6

29

30

7

10

29

33

13

12

24

16

4

2 9 6 1

6 29 30 7

10 29 33 13

12 24 16 4

h Input

Matrix

(4x1)

 Output

Matrix

(16x1)

 Output Matrix reshaped

(4x4)

Figure 35: A transposed convolution operation

To perform a transposed convolution, it is not necessary to begin with a normal convolution.

The weight layout needs to be transposed from that of the convolution matrix (Naoki, 2017).

2.5 Theoretical Literature Review

This study used a theory called the technology acceptance model. This model’s selection was

based on its ability to determine the attitude and behavioural intention of farmers to adopt and

use our proposed product, for example, the farmers' perceptions of its usefulness and ease of

X

32

usage (Venkatesh, 2000). This was covered in the validation of the mobile application in the

field with the stakeholder groups. This study also used the theory of diffusion of innovation.

The selection of this theory is based on its ability to determine the rate at which consumers will

adopt a new product or service (Dearing, 2018). The summary of the adopted model is

presented in Fig. 36.

Figure 36: Technology acceptance model (Lai, 2017)

2.6 Empirical Literature Review

This section discusses related works categorized into three categories which are feature

extraction, using deep learning and machine learning to detect banana diseases, and mobile

applications that deploy deep learning models for plant disease detection.

2.6.1 Feature Extraction

Bodapati and Veeranjaneyulu (2019) applied deep convolutional neural networks (DCNN) for

image classification and feature extraction. In their study, Bodapati and Veeranjaneyulu (2019)

performed two tasks: doing feature extraction using DCNN and then performing classification

on the extracted features using support vector machines (SVM). The DCNN architecture had

three convolutional and pooling layers which were followed by a fully connected output layer

for feature extraction, and these features were fed into a two-hidden-layer neural network for

classification in the first task. The results of their study showed that using u-SVM for

classifying features extracted from DCNN yielded slightly better performance than using s

neural network for classifying features extracted from DCNN.

Zhu et al. (2017) proposed classification and target recognition for sonor images from

unmanned underwater vehicles (UUVs) using deep learning feature extraction. Sonar image

feature extraction was done using a convolutional neural network, whereby the features were

33

classified using an SVM that used manually labeled data for its training. Their study's findings

demonstrated that deep learning feature extraction outperformed feature extraction from

methods like the histogram of oriented gradients (HOG) and local binary pattern (LBP).

2.6.2 Using Deep Learning and Machine Learning to Detect Banana Diseases

Selvaraj et al. (2019) suggested an AI-based system that detects banana pests and diseases. The

study used a large dataset of 30 952 annotated images. The images were gathered in southern

India and Africa. The diseases incorporated in this study were Xanthomonas wilt, Bunchy top

disease, Black Sigatoka, Fusarium wilt, Yellow Sigatoka, and Corm weevil. The model classes

included each disease, dried or old leaves, and healthy plants. Detection models were built by

training Faster R-CNN based on ResNet50 and InceptionV2 and an independent MobileNetV1

convolutional neural network architecture using transfer learning. Six models were built from

each architecture to represent diseases according to plant parts, utilizing images from various

banana plant parts (including the corm, fruit bunch, leaves, cut fruit, pseudostem, and entire

plant). This study showed that Faster R-CNN based on the InceptionV2 and ResNet50 models

had better performance compared to the MobileNetV1 model. Faster R-CNN model based on

ResNet50 on the pseudostem, leaves, fruit bunch, and entire plant performed better, with mean

Average Precision (mAP) of 99%, 70%, 97%, and 73%, respectively. Despite the good

performance, the study struggled with unbalanced data and was limited to a small number of

images for Bunchy Top disease (902 images), Black Sigatoka disease (980 images), Yellow

Sigatoka disease (1066 images), Fusarium Wilt disease (1726 images), and Corm Weevil

disease (701 images).

Bhuiyan et al. (2023) proposed a lightweight and fast convolutional neural network called the

BananaSqueezeNet model for the diagnosis of Pestalotiopsis, Sigatoka, and Cordana banana

diseases. This study used a dataset of 937 images collected in Bangladesh that consisted of the

three banana diseases. The BananaSqueezeNet model achieved 96.25% accuracy, 96.25%

recall, 96.53% precision, 96.17% F1-score, 98.75% specificity, and 95.13% MCC. Despite the

good performance, the study used a small number of images.

Narayanan et al. (2022) suggested the use of a hybrid convolutional neural network for the

classification of banana diseases. The banana diseases addressed by this study are Black

Sigatoka, banana bunchy top virus, Xanthomonas wilt, and Fusarium wilt. The study used a

dataset of 3500 images of infected and healthy banana plants collected from fields in south

34

India. The study integrated CNN and FSVM, which combine multiclass and binary SVM to

classify banana diseases. The proposed method achieved an accuracy of 99%. Despite the good

performance, the study lacked a sufficient number of images to train the model.

Amara et al. (2017) proposed an approach of deep learning using the LeNet architecture for

the classification of banana leaf disease. This study used a dataset of 3700 annotated images

belonging to the healthy, black speckle, and black sigatoka, classes. The study had several

experiments based on different training to test set ratios which were evaluated using accuracy,

F1-score, recall, and precision. For the 80:20 training-to-test ratio, the study achieved 92.88%

accuracy, 92.99% precision, 92.88% recall, and a 92.94% F1 score for the colored images.

Despite the good performance, this study was limited by a small number of black Sigatoka

images which were only 240.

Vidhya and Priya (2023) proposed the use of deep learning and machine learning for the

classification of diseases of the banana leaf. The banana diseases addressed by this study are

Sigatoka and Leafspot. The models proposed were SVM, KNN, and deep learning using

Alexnet. The study used a dataset of colored images of diseased and healthy leaves of banana

with or without a background. Data augmentation was performed on the image dataset. The

study yielded accuracies for testing of 84.86% for SVM, 76.49% for KNN, and 96.73% for

Alexnet.

Similarly, Ramadhani (2017) developed a solution for predicting the presence of banana

diseases and informing farmers so that they can prepare and be able to manage these diseases

once they occur. The study used weather station data and an intelligent prediction algorithm

(prediction based on weather conditions’ factors or features) in a mobile application to predict

the occurrence of diseases and provide farmers with early warning so that the diseases could

be managed. However, the developed approach was only limited to the area whose data were

collected for prediction, in this case, the Arumeru District in the Arusha Region. Furthermore,

the prediction accuracy was also limited by the accuracy and reliability of the data obtained

from the weather stations.

Moreover, Sanga et al. (2020) suggested early banana disease detection using a mobile

application. The mobile application classifies the diseases using a deep learning model. The

CNN architectures Inceptionv3 and Resnet152 were used. Inceptionv3 had an accuracy of

95.41% while Resnet152 had an accuracy of 99.2%. There were 3000 images of banana leaves

35

of three classes in the dataset: Fusarium Wilt infected leaves healthy leaves, and Black Sigatoka

infected leaves. The study had good performance for the developed models but it does not

localize the areas in the banana leaf or stalk image that are affected by the diseases.

2.6.3 Mobile Applications that deploy Deep Learning models for Plant Disease

Detection

Hui et al. (2021) proposed a mobile application that used a deep learning object detection model

to detect grape diseases. The mobile application in this study used Faster R-CNN based on the

Inception-v2 for efficient detection. The results showed that the application yielded an accuracy

of 97.9% when tested on grape disease images while running on the device without a server

connection.

Nirmal et al. (2022) suggested a smart app that is farmer-friendly for pomegranate disease

detection. The study’s goal was to use leaf images to automate the disease detection system.

The study’s dataset was built using Mendeley data and included images of healthy and diseased

pomegranate leaves. The study process included image data collection, image pre-processing,

classification, and deployment. The deep learning models used for classification were AlexNet

and VGG-16. The study showed that AlexNet was more efficient in detecting pomegranate leaf

disease, and it was therefore deployed in a mobile application. The mobile application would

help farmers detect pomegranate disease without the assistance of specialists.

Loyani and Machuve (2021) suggested a mobile application that employs deep learning to

segment Tuta absolouta’s effect on tomatoes. This study deployed a segmentation model that

was trained on a dataset of images of tomato leaves in a mobile application. The mobile

application is used for the early and real-time detection of tuta pests in the early stages of the

growth of tomatoes. With 70% minimum confidence and a 5-second time frame, the application

was able to identify and segment tuta absoluta-infected patches on tomato leaves.

2.7 Research Gap

Some of the related works used a small number of images to train their deep learning models

and to the best of the author's knowledge, none of the literature reviewed addressed the

segmentation of Black Sigatoka and Fusarium Wilt banana diseases. This study uses an image

segmentation technique with a large dataset. The dataset includes banana leaf and stalk images

categorized into healthy banana leaves, banana leaves infected by Black Sigatoka disease, and

36

banana leaf and stalk images infected by Fusarium Wilt disease collected from the field. The

dataset was used to develop a deep learning model for the early identification of Fusarium wilt

and Black Sigatoka diseases. The advantage of applying deep learning techniques to identify

diseases in plants as compared to other approaches, such as the one proposed by Ramadhani

(2017), is that a large number of images of plant leaves infected by the diseases are used to

train the deep learning models. The model learns from the disease symptoms features shown

from the image of the leaf. As long as the disease symptoms are the same or similar (which is

the case most of the time), the model detects a disease from a new image with very high

accuracy without considering the place in which the image of the plant leaf was taken.

The image segmentation technique has many advantages over other deep learning techniques,

such as classification methods. This technique can localize the infected area on the plant leaf

image by creating a mask around it. Through this localization, the image segmentation

technique shows the precise place on the leaf that is infected. If the image has multiple objects,

image segmentation can describe each object in the image, while classification can only

describe the whole image as one object of interest.

The best deep learning model was deployed in a mobile application to enhance its use by

farmers. The farmers will use the application to identify Fusarium Wilt and Black Sigatoka

diseases in the early stages. In addition, the mobile application also provides recommendations

for mitigating these diseases recommended by researchers so that farmers can be aware of them

and prevent the further spreading of the disease and rescue their yields.

37

CHAPTER THREE

MATERIALS AND METHODS

3.1 Study Area and Scope of the Research

The study area and scope of this research consist of the areas where the data used in this

research was collected. Images of both diseased and healthy banana plants were collected in

the Arusha, Kilimanjaro, Kagera, Mbeya, and Dar es Salaam regions of Tanzania. The selection

of these areas was based on banana availability and disease prevalence.

3.2 Data Collection

A dataset of 30 640 banana leaf and stalk images was collected from the fields. Data was

gathered using the Open Data Kit (ODK) tool called Adsurv, which was installed on a

smartphone. Banana leaves and stalks were captured using a smartphone camera. A Samsung

SM-A715F/DS phone camera was used to collect the dataset with normal settings. The data

collection exercise involved farmers, researchers, agricultural experts, and plant pathologists.

The dataset was collected on banana farms with healthy banana plants, some banana plants

affected by Black Sigatoka disease, and some banana plants affected by Fusarium Wilt disease.

To train the model with images of different qualities, images of various resolutions were

obtained. The model was intended to be used in the field, where it is anticipated that

smallholder farmers will use inexpensive phones with low quality, the model was trained using

both low and high-resolution photos. The images were collected by taking a picture close to

the banana leaf as seen in Fig. 37. To support further research in detecting and segmenting

Fusarium Wilt and Black Sigatoka banana diseases, the dataset used in this work is freely

available in an open-access repository, and more information about the dataset is reported by

Mduma and Leo (2023).

38

Figure 37: Data collection in the field

The dataset had three classes: images of healthy banana leaves, images of Black Sigatoka

infected banana leaves, and images of Fusarium Wilt infected banana leaves and stalks as

summarized in Table 1. Figure 38 shows sample images of a healthy banana leaf, a Black

Sigatoka infected banana leaf, and a Fusarium Wilt infected banana leaf and stalk.

Healthy Black Sigatoka Fusarium Wilt

Figure 38: Examples of images from the dataset

39

Table 1: Total number of data collected

Banana Images Number of images collected

Healthy Leaves 9779

Black Sigatoka infected leaves 10 137

Fusarium Wilt infected leaves and stalks 10 724

Total 30 640

3.3 Data Preprocessing

Data pre-processing is a crucial step that helps a deep learning model learn and extract features

from an image during model training. Data pre-processing in this work included cropping, data

cleaning, renaming, and data annotation.

3.3.1 Data Cleaning and Cropping

The image dataset was manually cropped to remove the background and unwanted items and

focus on the banana leaf or stalk. Removing duplicates was done to clean the banana images

dataset. VisiPics and Duplicate Photo Finder are free software programs that were used to

remove 3280 duplicates from the images as summarized in Table 2. This software program was

used because it is open-source and easy to use. In VisiPics, strictly similar (or identical) images

were removed as seen in Fig. 39. In Duplicate Photo Finder, images were searched against the

“same picture” filter.

Table 2: A summary of removing duplicates

Banana Images Before

Removing

Duplicates

After

Removing

Duplicates

Duplicates

found and

deleted

Healthy Leaves 9779 9120 659

Black Sigatoka infected leaves 10 137 9120 1017

Fusarium Wilt infected leaves and stalks 10 724 9120 1604

Total 30 640 27 360 3280

40

Figure 39: How VisiPics was used to detect and delete duplicates

3.3.2 Data Renaming

For simplicity, the clean images in each class were renamed to comprise image numbers. For

example, for healthy images, the first one was HEALTHY_1.jpg, and the numbers kept on

increasing to HEALTHY_9120.jpg. Bulk Rename Utility software, was used to rename images

for all classes as shown in Fig. 40. This tool was used because it is open-source and simple to

use.

Figure 40: How Bulk Rename Utility was used to rename images in the dataset

41

3.3.3 Data Annotation

Image segmentation algorithms require images to have masks around the regions of interest

with labels in training and validation to obtain accurate predictions of these regions of interest.

The 27 360 images for all classes were annotated for the image segmentation task. LabelMe,

which is open-source software, was used to annotate the images that were used in instance and

semantic segmentation by Mask R-CNN and U-Net models, respectively. The specific

procedure was to manually draw a mask around the regions of interest in the banana plant

image using irregular polygons and then label them with the class name. For example, for

banana leaf images affected by Black Sigatoka disease, an irregular polygon was drawn around

each spot showing the damage of the disease on the leaf, and each polygon was given the label

"Black Sigatoka". The irregular polygons drawn around the spots that showed the damage of

Fusarium Wilt disease on banana leaves and stalks were given the label "fusarium wilt".

For the healthy banana leaves, an irregular polygon was drawn around the whole leaf area in

the image, and the polygons were given the label "healthy". During annotation, the dataset had

at least one irregular polygon for each image. Each image file had its corresponding annotation

file in the same folder with the same name except for the extension. LabelMe saves its

annotations in JSON format which were converted into PNG format annotations used in the U-

Net model for semantic segmentation. Figure 41 shows how the dataset was annotated using

LabelMe software. The outputs of the image annotation process are illustrated in Fig. 42.

(a) (b) (c)

Figure 41: How LabelMe was used to manually annotate images (a) Annotation of a

healthy banana leaf image; (b) Annotation of a banana leaf image affected

by Black Sigatoka disease; and (c) Annotation of a banana stalk image

affected by Fusarium Wilt disease

42

(a) (b) (c) (d) (e)

Figure 42: The Image annotation outputs (a) Original image (b) Drawing a polygon

around the area on a leaf image affected by Black Sigatoka (c) Saving the

annotation in JSON format (d) Visualizations of the labels (e) Extraction of

the mask in PNG format

3.4 Research Framework

The research framework in Fig. 43 provides a comprehensive explanation of how this study

was conducted. A dataset comprising images of banana leaves and stalks was collected from

the field. This was followed by image preprocessing, then model development and validation.

For instance, segmentation, the Mask R-CNN model was created, and for semantic

segmentation, the U-Net model was. The mobile application deployed the best-optimized

model. The mobile application was validated in the field to see how well it worked. The mobile

application will be used by farmers and agricultural experts for the early identification of

banana diseases. The application also provides farmers with information concerning banana

diseases, and after disease detection, the application recommends to farmers initiatives to

undertake (like fungicides to use) to rescue their yields.

Figure 43: The research framework

43

3.5 Classification with Convolutional Neural Network Model

A basic CNN model was incorporated to classify banana plants and their diseases because the

CNN architecture is used as the foundation of the Mask R-CNN and the U-Net models. The

CNN model was built from scratch without using transfer learning.

3.5.1 Convolutional Neural Network Model Hyper-Parameters Tuning

In implementing the CNN model, a sequential model was used. The model contained four

convolutional layers, each followed by a max pooling layer, then followed by a dropout layer

with a rate of 0.2. The first and second convolutional layers had 16 and 32 filters while the

third and fourth each had 64 filters. Each convolutional layer used the ReLu activation function,

and all convolutional filters were 3×3 in size. These were followed by a flattened layer, which

was followed by a dense layer with 512 neurons with the ReLu activation function. The output

dense layer had four neurons, which was the number of our classes, and had a softmax

activation function. Images were rescaled to normalize them by 1/255 to a range of zero to one

and resized to 512x512 pixels. The CNN model used several hyperparameters as summarized

in Table 3.

Table 3: The CNN model training hyperparameters

Parameters Value(s)

Batch size 32

Epoch 100

Optimizer Adam (Learning rate = 0.001)

Loss Categorical Crossentropy

Metric Accuracy, Precision, Recall, and F-measure

3.5.2 The CNN Model Classes and Data Grouping During Training

The CNN model had four classes, which are "Black Sigatoka", "Fusarium Wilt", "Healthy",

and an extra class called "Not Banana". The extra class comprised images of other things apart

from a banana leaf or stalk. This extra class of "Not Banana" was included to enable the CNN

model to predict images of other things. Without this extra class, if, for example, a picture of

the sky was introduced to the CNN model to be predicted, it would be predicted as either Black

Sigatoka, Fusarium Wilt, or Healthy. But when the extra class is introduced to the CNN model

44

during training, the model will predict an image of the sky as "Not Banana". The dataset for

this extra class was collected from the internet. The model was trained in groups, where the

output weights that were used to train the first group were used as input for training the second

group, and so on.

The CNN model was trained in groups because of the large dataset. The entire dataset was

divided into five groups, where the first four groups had 2000 images for each of the Black

Sigatoka, Fusarium Wilt, and Healthy classes and 407 images for the Not Banana class. The

fifth group had 1120 images for each of the Black Sigatoka, Fusarium Wilt, and Healthy classes

and 407 images for the Not Banana class. Eighty percent of the images in each group were used

for training and 20% for validation. Table 4 shows the data distribution for the CNN model.

Appendix 5 shows the CNN model source code.

45

Table 4: Data distribution for the CNN model

Group Banana Images Training

Set

Validation

Set

Total

Images

Group 1

Healthy banana leaves 1600 400

6407

Black Sigatoka infected banana leaves 1600 400

Fusarium Wilt infected banana leaves

and stalks

1600 400

Not banana leaves or stalk 326 81

Group 1 Total 5126 1218

Group 2

Healthy banana leaves 1600 400

6407

Black Sigatoka infected banana leaves 1600 400

Fusarium Wilt infected banana leaves

and stalks

1600 400

Not banana leaves or stalk 326 81

Group 2 Total 5126 1218

Group 3

Healthy banana leaves 1600 400

6407

Black Sigatoka infected banana leaves 1600 400

Fusarium Wilt infected banana leaves

and stalks

1600 400

Not banana leaves or stalk 326 81

Group 3 Total 5126 1218

Group 4

Healthy banana leaves 1600 400

6407

Black Sigatoka infected banana leaves 1600 400

Fusarium Wilt infected banana leaves

and stalks

1600 400

Not banana leaves or stalk 326 81

Group 4 Total 5126 1218

Group 5

Healthy banana leaves 896 224

3767

Black Sigatoka infected banana leaves 896 224

Fusarium Wilt infected banana leaves

and stalks

896 224

Not banana leaves or stalk 326 81

Group 5 Total 3014 753

Total 23 518 5877 29 395

46

3.6 Transfer Learning

Transfer learning is a method where a model created for one job is utilized as a foundation for

another model created for a similar but distinct activity. In the Mask R-CNN model, transfer

learning is applied through the latest Mask R-CNN trained weights from the COCO dataset.

U-Net was trained and yielded the best performance in several International Symposium on

Biomedical Imaging (ISBI) challenges (Ronneberger et al., 2015) in semantic segmentation.

3.7 Mask Region-Based Convolutional Neutral Network Model Hyper-Parameter

Tuning

The Mask R-CNN model used several hyperparameters as summarized in Table 5, for feature

extraction and model training. Appendix 3 shows the Mask R-CNN model source code.

47

Table 5: Mask R-CNN model training hyperparameters

Parameters Value(s)

Backbone ResNet50 or ResNet101

Backbone Strides [4, 8, 16, 32, 64]

Batch Size 1

Detection Maximum Instances 100

Detection Minimum Confidence 0.7

Detection NMS Threshold 0.3

GPU Count 1

Images per GPU 1

Image Maximum Dimension 896

Image Minimum Dimension 896

Image Resize Mode square

Image Shape [896 896 3]

Learning Momentum 0.9

Learning Rate 0.001

Loss Weights

{'rpn_class_loss': 1.0,

'rpn_bbox_loss': 1.0,

'mrcnn_class_loss': 1.0,

'mrcnn_bbox_loss': 1.0,

'mrcnn_mask_loss': 1.0}

Mask Shape [28, 28]

Number of Classes 4

RPN Anchor Scales (8, 16, 64, 128, 256)

RPN Anchor Stride 1

RPN NMS Threshold 0.7

Steps Per Epoch 150

Validation Steps 30

Weight decay 0.0001

Epoch 50

48

3.8 The U-Net Model

3.8.1 The U-Net Model Hyper-Parameter Tuning

A custom U-Net model was used whereby its initial layer had 32 convolutional filters. Every

layer in the contraction path resulted in a doubling of this number of filters. The number of

layers in the contraction path was set to 4. The images were scaled to a range of zero to one

and resized to 512×512 pixels. The training dataset size was increased by using data

augmentation. The data argumentation techniques applied included a rotation of 5.0 degrees, a

height and width shift range of 0.05, a shear range of 40, a zoom range of 0.2, vertical and

horizontal flipping, and a fill mode of constant. Data augmentation was applied equally to both

images and their annotations. The U-Net model experiment used 200 epochs, an SGD

activation function, an IoU threshold for a minimum detection probability of 0.5, and a learning

rate of 0.01.

3.8.2 The U-Net Model Classes and Data Grouping During Training

In training the U-Net model, two classes were used, which are Black Sigatoka and Fusarium

Wilt images. The U-Net model used image masks which were in PNG format. Therefore, each

JPG image had its own corresponding PNG mask. The U-Net model was trained in groups

because of the large dataset and very high computing time, especially when resizing and

converting each image and its mask into NumPy array values. When we tried to train the model

with the entire dataset the process of converting the images and their corresponding masks into

NumPy arrays (so that they could be used to train the model) was not reaching an end (because

of the huge number of images) hence we could not reach the stage of training the model. This

caused the dataset in the U-Net model to be divided into 25 groups to handle a small number

of images at a time. The first 12 had 500 images together with their corresponding masks for

each of Black Sigatoka and Fusarium Wilt. Groups 13 to 24 had 250 images together with their

corresponding masks for each Black Sigatoka and Fusarium Wilt. Group 25 had 120 images

together with their corresponding masks for each of Black Sigatoka and Fusarium Wilt. Eighty

percent of the images in each group were used for training and 20% for validation in a random

split.

The output trained weight from the first group was used as the input weight for training the

second group and so on. Unfortunately, due to the long time required during the annotation

process, an extra class could not be added to be able to segment other plants or things that are

49

not images of the banana plant. Table 6 shows the data distribution for each group for the U-

NET model. Appendix 4 shows the U-Net model source code.

Table 6: Data distribution for the U-NET model

Group Banana Images Number of

Images

Total

Images

Training

set

Validation

set

Group 1

Black Sigatoka infected leaves 500

1000 800 200
Fusarium Wilt infected leaves

and stalks
500

Group 2

Black Sigatoka infected leaves 500

1000 800 200
Fusarium Wilt infected leaves

and stalks
500

Group 3

Black Sigatoka infected leaves 500

1000 800 200
Fusarium Wilt infected leaves

and stalks
500

Group 4

Black Sigatoka infected leaves 500

1000 800 200
Fusarium Wilt infected leaves

and stalks
500

Group 5

Black Sigatoka infected leaves 500

1000 800 200
Fusarium Wilt infected leaves

and stalks
500

Group 6

Black Sigatoka infected leaves 500

1000 800 200
Fusarium Wilt infected leaves

and stalks
500

Group 7

Black Sigatoka infected leaves 500

1000 800 200
Fusarium Wilt infected leaves

and stalks
500

Group 8

Black Sigatoka infected leaves 500

1000 800 200
Fusarium Wilt infected leaves

and stalks
500

Group 9 Black Sigatoka infected leaves 500 1000 800 200

50

Fusarium Wilt infected leaves

and stalks
500

Group Banana Images Number of

Images

Total

Images

Training

set

Validation

set

Group 10

Black Sigatoka infected leaves 500

1000 800 200
Fusarium Wilt infected leaves

and stalks
500

Group 11

Black Sigatoka infected leaves 500

1000 800 200
Fusarium Wilt infected leaves

and stalks
500

Group 12

Black Sigatoka infected leaves 500

1000 800 200
Fusarium Wilt infected leaves

and stalks
500

Group 13

Black Sigatoka infected leaves 250

500 400 100
Fusarium Wilt infected leaves

and stalks
250

Group 14

Black Sigatoka infected leaves 250

500 400 100
Fusarium Wilt infected leaves

and stalks
250

Group 15

Black Sigatoka infected leaves 250

500 400 100
Fusarium Wilt infected leaves

and stalks
250

Group 16

Black Sigatoka infected leaves 250

500 400 100
Fusarium Wilt infected leaves

and stalks
250

Group 17

Black Sigatoka infected leaves 250

500 400 100
Fusarium Wilt infected leaves

and stalks
250

Group 18 Black Sigatoka infected leaves 250 500 400 100

51

Fusarium Wilt infected leaves

and stalks
250

Group Banana Images Number of

Images

Total

Images

Training

set

Validation

set

Group 19

Black Sigatoka infected leaves 250

500 400 100
Fusarium Wilt infected leaves

and stalks
250

Group 20

Black Sigatoka infected leaves 250

500 400 100
Fusarium Wilt infected leaves

and stalks
250

Group 21

Black Sigatoka infected leaves 250

500 400 100
Fusarium Wilt infected leaves

and stalks
250

Group 22

Black Sigatoka infected leaves 250

500 400 100
Fusarium Wilt infected leaves

and stalks
250

Group 23

Black Sigatoka infected leaves 250

500 400 100
Fusarium Wilt infected leaves

and stalks
250

Group 24

Black Sigatoka infected leaves 250

500 400 100
Fusarium Wilt infected leaves

and stalks
250

Group 25

Black Sigatoka infected leaves 120

240 192 48
Fusarium Wilt infected leaves

and stalks
120

Total 18 240 18 240 14 592 3648

3.9 Experiment Setting

The experiments were done on a PC with Windows 11 Pro and one Intel(R) Core (TM) i5-

8250U CPU @ 1.60GHz 1.80 GHz, with 8GB of RAM. The notebook was run on Google

Colab Pro Plus with a Tesla T4 GPU and 54.8GB of RAM. Python 3 and the TensorFlow

backend were used to implement the network.

52

3.10 Evaluation

Deep learning models are assessed by evaluating how successfully the learned model

generalizes to previously unexplored data. A deep learning model's performance is measured

using a variety of evaluation metrics. Different deep-learning tasks, including classification,

localization, and others, are evaluated using different evaluation metrics. The CNN model’s

performance was evaluated using accuracy, f-measure, recall, and precision. Mean Average

Precision (mAP), Dice Coefficient, and Intersection over Union were used to assess the

effectiveness of the instance (Mask R-CNN) and semantic (U-Net) segmentation models. The

following definitions apply to these evaluation metrics:

3.10.1 Accuracy

One of the evaluation metrics for classification model evaluation is accuracy. According to

Equation 1, accuracy is calculated as the number of accurate classification predictions divided

by the total number of predictions:

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠+𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (1)

3.10.2 Recall

The question that recalls answers is: What proportion of actual positives was identified

correctly? Recall tells the percentage of predictions the model correctly identified as the

positive class when ground truth was the positive class. A model has a recall of 1.0 if it does

not have false negatives. Recall can be defined as seen in Equation 2:

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2)

Where:

TP (True Positives): is the number of positive samples correctly predicted.

FN (false Negatives) is the number of positive samples that are wrongly predicted as negative.

3.10.3 Precision

The question that precision answers is: What proportion of positive identifications were

actually correct? Precision tells the percentage of correct predictions when the model predicts

53

a positive class. A model has a precision of 1.0 if it does not have false positives. Precision can

be defined as seen in Equation 3.

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3)

Where:

TP (True Positives): the number of positive samples correctly predicted.

FP (false Positives): the number of negative samples that are wrongly predicted as positive.

3.10.4 The F-Measure

The computation of the harmonic mean of recall and precision, assigning equal weights to

each, is called the F-measure. The F-measure gives the best precision and recall at the same

time. This allows for the accounting of both precision and recall in a single score, allowing for

the comparison of models and the description of a model's performance. The F-measure can be

calculated using the formula in Equation 4.

 𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (4)

3.10.5 Mean Average Precision (mAP)

The average precisions for every class over all classes are given by the Mean Average Precision

(mAP). It is used as the key evaluation metric to assess how well the model segmented the data.

Mean Average Precision (mAP) is computed by the formula in Equation 5.

 𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖

𝑁
𝑖=1 (5)

Where:

𝑚𝐴𝑃 is the mean Average Precision of all classes.

𝐴𝑃𝑖 is the Average Precision.

∑ 𝐴𝑃𝑖
𝑁
𝑖=1 is the sum of Average Precision values.

N is the number of all classes.

54

Average Precision is the area under the Precision-Recall (PR) curve. The Precision-Recall

curve depicts the tradeoff between precision and recall for various thresholds. While high recall

is associated with a low false negative rate, high precision is associated with a low false positive

rate. High recall and precision are both indicated by a high area under the curve. High scores

for both show that the classifier is generating accurate (high precision) and largely positive

(high recall) results. In the Precision-Recall (PR) curve, precision is the y-axis and recall are

the x-axis. Setting an IoU threshold value yields several precision-recall value pairs, which are

then used to plot the graph. Any detection that has an IoU value below the predetermined

threshold is classified as a false positive or true positive otherwise. The precision-recall graph

is created by computing the precision and recall at each detection, then sorting the results by

the threshold and traversing through all precision-recall value pairings.

3.10.6 Intersection Over Union

A number called Intersection Over Union (IoU) evaluates how much two boxes or masks

overlap. In the context of object detection and image segmentation, IoU evaluates the overlap

between the Ground Truth and Prediction region. In image segmentation, IoU is the main

metric that evaluates the accuracy of a model. The IoU is the overlapping area (the point where

the predicted mask and the ground truth mask meet) over the union area (where the predicted

mask and the ground truth mask are joined). When the IoU exceeds a predetermined threshold,

the prediction is said to be True Positive (TP), and when it falls short of that threshold, it is said

to be False Positive (FP). The Intersection over Union (IoU) is given by the formula in Equation

6.

 𝐼𝑜𝑈 =
𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝐴𝑟𝑒𝑎

𝑈𝑛𝑖𝑜𝑛 𝐴𝑟𝑒𝑎
 (6)

Intersection over Union (IoU) varies in the range of zero to one, with zero signifying that

between the masks there is no overlap and one signifying that between the masks there is

perfect overlap, i.e., a perfect prediction.

55

3.10.7 Dice Coefficient

The Dice coefficient is a spatial overlap index and a reproducibility validation metric. The

overlap between the predicted mask and the actual mask is measured by the dice coefficient.

Its value ranges from zero, which means no spatial overlap between ground truth and predicted

mask, to one, which means complete overlap. The dice coefficient is 2 * the area of overlap

divided by the total number of pixels in both images. The dice coefficient is defined as seen in

Equation 7.

 𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
2∗𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝐴𝑟𝑒𝑎

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑏𝑜𝑡ℎ 𝑖𝑚𝑎𝑔𝑒𝑠
=

2∗

 (7)

3.10.8 Loss Function

Loss is a measure of how poorly the model predicted a single example. Loss is a number given

by a loss function. The goal of a model is to minimize the loss function. The loss value is one

of the guides to inform us on whether to continue with hyperparameter tuning to improve the

model’s performance. A model with good performance will have a small loss number.

(i) Mask R-CNN Loss Function

Mask R-CNN combines different losses for each sampled region of interest into one multi-task

loss. The loss used by Mask R-CNN sums up the losses from classification, bounding box, and

mask prediction. The bounding box and classification losses used by Mask R-CNN originate

from Faster R-CNN. The mask branch contains a Km2 dimensional output for every region of

interest that encodes K binary masks of resolution m*m, one for every K class. A per-pixel

sigmoid is applied to this, and a mask loss is defined as the average binary cross-entropy loss.

A per-pixel sigmoid and a binary loss allow the network to generate masks for each class

without competition among classes. The Mask R-CNN loss is defined as seen in Equation 8.

 𝐿 = 𝐿𝑐𝑙𝑠 + 𝐿𝑏𝑜𝑥 + 𝐿𝑚𝑎𝑠𝑘 (8)

Where:

𝐿𝑐𝑙𝑠 is the classification loss.

56

𝐿𝑏𝑜𝑥 is the bounding-box loss.

𝐿𝑚𝑎𝑠𝑘 is the mask loss.

(ii) The U-Net Loss Function

Ronneberger et al. (2015) state that “The energy function is computed by a pixel-wise soft-

max over the final feature map combined with the cross-entropy loss function.” In other words,

the cross-entropy loss function is applied after pixel-by-pixel softmax on the U-Net's output

feature map. As a result, the segmentation problem is transformed into a multiclass

classification problem and each pixel is given to a certain class. When using a weighted loss,

U-Net gives background labels that separate touching items a lot of weight. The loss weighting

scheme helps U-Net distinguish touching objects of the same class. Hence, U-Net can separate

individual spots of Black Sigatoka within a binary segmentation map.

3.11 Model Deployment

Model deployment is the procedure of putting the deep learning model into use so that it may

be used to make predictions or find patterns using data. A deep learning model can be deployed

in an embedded Internet of Things system, a web application, or a mobile application. The

image segmentation model was deployed in a mobile application so that it could be accessed

and used by agricultural extension officers and farmers to detect banana diseases at an early

stage. Also, the developed mobile application provides recommendations to users so that they

can be aware of what measures to be taken to mitigate the situation.

Deep learning models are resource-intensive. They require a lot of memory and storage

capacity to run. To meet the resource limitations in a mobile phone environment, the

TensorFlow Lite framework was utilized to transform the model into a mobile readable format.

TensorFlow Lite is a collection of tools created to suit all the requirements of embedded and

mobile systems for deployment. Some of the constraints addressed by TensorFlow Lite are

battery consumption, low latency, lightweightness, and an efficient model format. TensorFlow

Lite is not designed to be a framework for training models; the model is trained in TensorFlow

instead. A TensorFlow model was converted into TensorFlow Lite format by a converter that

shrinks and optimizes the model, which was then loaded and run using a TensorFlow Lite

interpreter. Figure 44 illustrates the TensorFlow Lite suite.

57

Figure 44: The TensorFlow Lite suite (Moroney, 2021)

The other option was to deploy a normal TensorFlow model on a web server and create an

Application Programming Interface (API) to be used to access the model from the mobile

application through a Uniform Resource Locator (URL).

The CNN deep learning model was deployed in a mobile application after being translated to

TensorFlow Lite format. However, the use of a compressed TensorFlow Lite format model

proved to be less efficient because the ability of the model to detect diseased and healthy banana

leaves and stalks was reduced tremendously. The original TensorFlow model could detect or

predict more accurately than when it was converted to TensorFlow Lite. As a result of this, the

study opted to deploy the original TensorFlow model on a web server and create an API to

access this model from the mobile application. Appendix 6 shows the Model deployment

Flutter Source code.

3.11.1 Requirements Elicitation and Analysis

This section discusses the services that will be provided by the mobile application. To achieve

the specific objective of developing an image segmentation deep learning model for the early

detection of banana plant diseases, the requirement was to collect images of banana leaves that

were healthy, Black Sigatoka infected banana leaves, and Fusarium Wilt infected banana leaves

and stalks. The requirements for the development of the mobile application were obtained by

interviewing the stakeholders, including prospective users, which are farmers, agricultural

extension officers, and other agricultural and technical experts. Appendix 1 shows the

questions that were asked to these people. Six people were involved in this process.

(i) Functional Requirements

The services offered by the mobile application are included in the Functional requirements.

58

They include the relationship between input and output. Table 7 describes the functional

requirements that were identified for the developed mobile application.

Table 7: The mobile application’s functional requirements and their description

Functional

Requirement

ID

Functional

Requirement Name

Functional Requirement Description

1 Capture an image The application should allow farmers and

extension officers to take a picture of a banana

plant through the mobile phone camera.

2 Upload an image The application should allow farmers and

extension officers to upload an image of a banana

plant from the phone’s gallery.

3 Display image The application should allow farmers and

extension officers to display the captured or

uploaded image.

4 CNN model runs

inference

The application should deploy an image

classification deep learning model and allow

farmers and extension officers to run inference in

the background on the displayed image in the

application to detect whether the banana leaf or

stalk is healthy or is affected by either Fusarium

Wilt or Black Sigatoka banana diseases.

5 View detection results The application should allow farmers and

extension officers to view detection results from

the mobile application after detecting a disease.

6 View mitigation

recommendations

The application should allow farmers and

extension officers to view the mitigation

recommendations against the banana diseases

detected in the mobile application.

7 View banana

information

The application should allow farmers and

extension officers to view general information

about banana farming, including:

a) different types of bananas,

b) the banana types that provide the highest

yields,

c) the banana types that have high demand in

the market, and

d) the best practices in banana farming.

59

Functional

Requirement

ID

Functional

Requirement Name

Functional Requirement Description

8 View disease

information

The application should allow farmers and

extension officers to view general information

about Fusarium Wilt and Black Sigatoka banana

diseases. This includes:

a) their causes,

b) symptoms,

c) transmission mechanism, and

d) mitigation strategy.

a. Including how to eradicate sick

banana plants without spreading the

disease further.

9 Change language The application should include English and

Swahili languages and allow farmers and

extension officers to choose which language they

prefer for the application.

10 Update/Patch the

application

The application should receive its updates and

patches from a web-based backend system that will

allow the administrator to manage it.

(ii) Non-functional Requirements

Non-functional requirements outline the characteristics or standards used to evaluate the

system's performance. How efficiently the system operates can enhance the system’s

functionality. Table 8 describes the non-functional requirements that were identified for the

mobile application.

60

Table 8: Non-functional requirements for the mobile application and their description

Non-

functional

Requirement

ID

Non-functional

Requirement Name

Non-functional Requirement Description

1 Availability The application and the deep learning model

should be available all the time for the farmers to

use.

2 Reliability The application should be able to accurately detect

healthy banana plants and banana plants affected

by either Fusarium Wilt or Black Sigatoka

diseases, given an image of a banana leaf or stalk.

3 Performance The application should have low latency in

performing inference and displaying detection

results.

4 Usability The application should be intuitive and easy to use

without any need for guidance.

5 Compatibility The application should be accessible to mobile

phones running on Android operating systems.

3.11.2 System Design

System design defines the system elements, including modules, architecture, system

components, and their interfaces, as well as their data. Several design models for the

recommended mobile application are included. These are the use case diagram, activity

diagram, and sequence diagram.

(i) Use Case Diagram

A use-case diagram shows the activities that are accomplished by the users of the system. It

comprises the use cases or discrete tasks, the actors or users of the system, and the relationship

between them. Figure 45 shows the use case diagram for the banana disease detection mobile

application.

61

Figure 45: Use case diagram for the banana diseases detection mobile application

(ii) Activity Diagram

An activity diagram is used in business process modelling. It depicts the processes that a user

of the mobile application can go through, from the beginning when the user launches the

application to when the user achieves their goal and closes their application. Figure 46

illustrates the activity diagram for the mobile application for banana disease detection.

62

Figure 46: Activity diagram for the banana diseases detection mobile application

(iii) Sequence Diagram

The interaction between the actors and the objects in a system is modelled using a sequence

diagram. It depicts the interactions happening in a particular use case or use case instance.

Figure 47 illustrates a sequence diagram for the capture/upload image use case.

Figure 47: Sequence diagram for the capture/upload image use case

63

3.11.3 System Development Methodology

This study used the agile method using extreme programming (XP) for developing the mobile

application. Agile methodology was adopted because it accelerates software delivery and

enhances the ability to manage changing priorities. Extreme programming (XP) allows the

development of software in small iterations, whereby each iteration can be tested against

customer user stories, and user feedback in acceptance testing helps to determine the readiness

of the software for release or needs more iterations.

3.11.4 Technologies Used

The Flutter framework which uses the Dart language was used in the Android Studio IDE to

develop the mobile application. The image classification deep learning model was trained using

TensorFlow in the Google Colab Pro computing environment. The conversion of the model

into a lighter version (mobile phone-compatible) using TensorFlow Lite was done. A Samsung

SM-A715F/DS was used in testing the mobile application. The Flask framework was used to

develop an API to access the TensorFlow model from the mobile application.

3.12 Validation of the Performance of the Developed Mobile Application

Validation or user acceptance testing of the mobile application was done by using the

requirements of the mobile application and testing if they were met. Questions were formulated

about the requirements, and the users were required to either answer Yes or No. Appendix 2

presents the questionnaire that was used during system validation.

64

CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Feature Extraction Results

The features from the image were extracted by the CNN backbone architecture. Mask R-CNN

utilizes ResNet101 and ResNet50 backbone architectures for feature extraction. The

subsequent layers receive the extracted features as their input. Figure 48 presents the results of

backbone feature maps from the dataset at different layers.

(a)

(b)

(c)

Figure 48: Example of backbone feature maps at the (a) input layer (b) res2c_out

activation layer, and (c) res3c_out activation layer

Figure 49 presents the regions of interest (ROIs) and negative and positive anchors from the

dataset. The regions of interest highlight the leaf area that is affected by the disease as the area

of interest.

65

(a) (b) (c)

Figure 49: Examples of RPN anchors (a) Regions of Interest (ROIs), (b) Negative

anchors, and (c) Positive anchors

From the U-Net model, Fig. 50 shows the original image (bottom row), the ground truth from

the mask or annotation (middle row), and the mask overlaid on the original image (top row).

The data augmentation is applied equally to the original image and its mask before training, as

seen in Fig. 51.

Figure 50: Original image, ground truth from the mask and the mask overlaid on the

original image

66

Figure 51: Data augmentation applied equally on the image and its mask

4.2 Model Development Results

4.2.1 Convolutional Neural Network Model Results

(i) General Results

The results of the CNN models trained in groups are given in Table 9. Results showed that the

second group had the best overall performance with the highest validation accuracy, F-

measure, recall, and precision, and the lowest validation loss. Figure 52 shows the graphs of

the CNN model’s performance for the second group. On the accuracy over epoch graph on the

left of Fig. 52, results show that the validation accuracy rose rapidly to the 6th epoch, then

remained steady around 90% with some fluctuations, hitting a maximum of 91.17%, while the

training accuracy followed the same pattern without fluctuations, rising higher than the

validation accuracy. This shows that the model generalized well. On the loss over epoch graph

on the right of Fig. 52, results showed that the training loss decreases rapidly in the early

epochs, and at epoch 21, it starts to decrease steadily until the end, while the validation loss

decreases rapidly from the beginning, and from epoch 6, it started increasing steadily with

fluctuations.

67

Table 9: The CNN model performance for detecting banana diseases

Model Group Epoch Validation

loss

Precision

(%)

Recall

(%)

F-measure

(%)

Validation

Accuracy (%)

CNN Group 1 100 0.7621 65.75 65.81 65.70 65.86

CNN Group 2 100 0.2683 91.08 91.62 90.55 91.17

CNN Group 3 100 0.7367 78.52 78.12 78.12 78.59

CNN Group 4 100 0.6775 84.74 84.05 84.45 84.77

CNN Group 5 100 0.5418 83.28 84.00 82.57 83.49

Figure 52: Performance for the CNN model

(ii) Training Time Results

Training time is a crucial measure of a model’s performance. Table 10 shows the training times

for the CNN model experiments. The results show that from CNN group 2 to group 5, there is

a significant time decrease compared to group 1. This is because CNN group 1 was trained

with a larger image size, with a maximum of 700 KB per image, but in CNN groups 2 to 5, the

images had a maximum of 100 KB per image. CNN group 5 had the least training time because

it had fewer images compared to other groups, as seen in the data distribution for the CNN

model in Table 4.

68

Table 10: CNN model training time

CNN Group Training time (Seconds)

CNN Group 1 20 558.496

CNN Group 2 13 586.031

CNN Group 3 12 200.882

CNN Group 4 14 189.828

CNN Group 5 6983.726

4.2.2 Mask Region-Based Convolutional Neural Network Model Results

The Mask R-CNN model yielded a mean Average Precision (mAP) of 0.045 29. The Mask R-

CNN model with ResNet101 had a training time of 1166.52 minutes (69 991.2 seconds). The

complexity of the Mask R-CNN model’s structure leads to a much longer training time when

compared to the CNN model. The model was able to accurately segment Fusarium Wilt

infected areas and Black Sigatoka infected areas with high confidence scores. Figure 53

illustrates examples of how the Mask R-CNN model predicted the segmentations of the Black

Sigatoka infected banana leaf and the Fusarium Wilt infected banana leaf respectively.

(a) (b)

Figure 53: Examples of how the Mask R-CNN model predicts segmentations (a) Image

segmentation of a leaf affected by Black Sigatoka disease: and (b) Image

segmentation of a leaf affected by Fusarium Wilt disease

4.2.3 The U-Net Model Results

(i) The U-Net Model Loss Results

The loss results for all the model experiments done are shown in Table 11. The results show

that U-Net group 8 has the least validation loss and training loss, while the other groups vary

69

slightly. Following every training epoch, estimates of the training and validation losses were

made. Figure 54 shows the loss over epoch graph for the U-Net group 8 model with 100 epochs.

The graph shows that the training loss has a decreasing trend during training with small

fluctuations, while the validation loss also decreases but with milder fluctuations, hitting a

minimum of 0.0583. This suggests that both early in the training process and later on, the U-

Net model fits well on the features of our dataset. The U-Net group 8 model had the best

performance because it obtained the lowest loss value when compared to other groups.

70

Table 11: Model loss results

Model Group Training loss Validation loss

U-Net group 1 0.0976 0.1151

U-Net group 2 0.1041 0.1025

U-Net group 3 0.1162 0.1161

U-Net group 4 0.0755 0.0744

U-Net group 5 0.0773 0.0743

U-Net group 6 0.0450 0.0729

U-Net group 7 0.0539 0.0735

U-Net group 8 0.0474 0.0583

U-Net group 9 0.1174 0.1331

U-Net group 10 0.1136 0.1410

U-Net group 11 0.1297 0.1893

U-Net group 12 0.0863 0.1336

U-Net group 13 0.1650 0.2297

U-Net group 14 0.1773 0.2304

U-Net group 15 0.0595 0.0886

U-Net group 16 0.1468 0.2372

U-Net group 17 0.1893 0.2574

U-Net group 18 0.1582 0.1956

U-Net group 19 0.1442 0.1793

U-Net group 20 0.1340 0.1696

U-Net group 21 0.1633 0.1814

U-Net group 22 0.1468 0.1771

U-Net group 23 0.1202 0.1496

U-Net group 24 0.1386 0.2028

U-Net group 25 0.0858 0.1658

71

Figure 54: Loss over epoch graph for U-Net group 8 model

(ii) The U-Net Model Evaluation Metrics Results

The quality of the U-Net semantic segmentation model results was evaluated using the Dice

coefficient and Intersection over Union. The evaluation metrics results for all the model

experiments done are shown in Table 12. It can be seen that the best-performing group overall

is U-Net group 8 which achieved a Dice coefficient of 96.45% and an Intersection over Union

of 93.23%, with slight variations in other groups. Figure 55 shows the Intersection over Union

over epoch graph for the U-Net group 8 model. In the graph, the training IoU begins near 0.84

while the validation IoU begins near 0.88 and they both increase steadily with some

fluctuations which are milder for the validation IoU. At the 100th epoch the training IoU is near

0.94 while the validation IoU is near 0.92. This trend shows that the model learned well the

dataset features and could segment the diseased areas well. Figure 56 shows the Dice

Coefficient over epoch graph for the U-Net group 8 model. The graph shows that the training

Dice Coefficient starts near 0.89 while the validation Dice Coefficient starts near 0.94 and they

both rise steadily with some fluctuations. The validation Dice Coefficient had milder

fluctuations. At the last epoch, the training Dice Coefficient was slightly over 0.96 while the

validation Dice Coefficient was near 0.96. This trend shows that the model fits well on the data

and could segment the diseased areas well.

72

Table 12: Model evaluation metric results

Model Group IoU (%) Dice Coefficient

(%)

Validation

IoU (%)

Validation Dice

Coefficient (%)

U-Net group 1 86.71 92.21 87.31 93.08

U-Net group 2 86.98 92.47 87.99 93.57

U-Net group 3 83.97 90.67 87.82 93.42

U-Net group 4 87.51 92.73 91.41 95.49

U-Net group 5 88.01 92.98 91.38 95.47

U-Net group 6 92.86 95.97 91.62 95.58

U-Net group 7 92.77 96.01 91.71 95.65

U-Net group 8 93.28 96.25 93.23 96.45

U-Net group 9 82.90 90.05 83.49 90.90

U-Net group 10 85.09 91.38 84.06 91.29

U-Net group 11 84.42 90.51 80.34 89.05

U-Net group 12 89.72 93.72 87.48 93.20

U-Net group 13 70.26 80.77 78.96 87.83

U-Net group 14 75.41 84.83 75.01 85.55

U-Net group 15 91.77 95.33 92.46 95.94

U-Net group 16 81.51 88.35 77.13 86.97

U-Net group 17 74.07 84.18 72.68 84.10

U-Net group 18 73.29 83.43 73.71 84.76

U-Net group 19 77.96 86.77 78.07 87.66

U-Net group 20 81.45 88.61 79.22 88.11

U-Net group 21 76.03 85.53 76.64 86.70

U-Net group 22 79.41 87.42 84.30 91.26

U-Net group 23 84.92 90.80 86.52 92.73

U-Net group 24 83.08 89.97 80.72 89.22

U-Net group 25 89.51 93.99 83.39 90.93

73

Figure 55: Intersection over Union over epoch graph for U-Net group 8 model

Figure 56: Dice coefficient over epoch graph for U-Net group 8 model

(iii) The U-Net Model Training Time Results

How efficient a model is in training is an important measure of its performance. The training

times in minutes for all the model group experiments done are given in Table 13. The training

times in minutes for the first 12 model group experiments ranged from 162.47 minutes to

175.63 minutes. The training times from group 13 to group 24 ranged from 89.16 minutes to

93.57 minutes because they had less data and the training time for group 25 model experiment

was 87.77 minutes because it had the least amount of data.

74

Table 13: Model training time

Model Group Training time (Mins)

U-Net group 1 166.82

U-Net group 2 172.12

U-Net group 3 168.62

U-Net group 4 175.63

U-Net group 5 164.7

U-Net group 6 165.66

U-Net group 7 166.32

U-Net group 8 170.3

U-Net group 9 167.1

U-Net group 10 162.47

U-Net group 11 163.42

U-Net group 12 168.41

U-Net group 13 92.44

U-Net group 14 92.45

U-Net group 15 91.91

U-Net group 16 92.43

U-Net group 17 91.44

U-Net group 18 92.43

U-Net group 19 92.22

U-Net group 20 89.16

U-Net group 21 93.57

U-Net group 22 91.43

U-Net group 23 92.55

U-Net group 24 93.49

U-Net group 25 87.77

75

The U-Net model could segment the two banana diseases well. Figure 57 shows the

segmentation predictions for banana leaves affected by Fusarium Wilt and Black Sigatoka

diseases. In Fig. 57, the bottom row shows the original images and the second row from the

bottom displays the ground truths from the annotations. The third row from the bottom is the

predictions from the U-Net model while the top row is the predictions overlayed on top of the

original image. From Fig. 57, the model was able to segment the areas where the leaves were

not green signifying the presence of disease, and leave out healthy green areas. From the study

all images had either Black Sigatoka disease or Fusarium Wilt disease, so every image had

only one class.

Figure 57: Segmentation predictions from the U-Net model

4.3 Model Deployment Results

An interactive and intuitive mobile application was developed to deploy the CNN deep learning

model.

76

Figure 58: Banana disease detection mobile application splash screen and detect page in

English and Kiswahili

An intuitive and easy-to-use mobile application was developed that helps farmers and

extension officers detect Fusarium Wilt and Black Sigatoka banana diseases early. When the

application is opened, a splash screen is displayed for a few seconds, and then the detect page

is opened (Fig. 58). Capturing images from the mobile phone camera or uploading images from

the phone’s gallery can be done by the user in the "Detect" page. When a banana leaf or stalk

image is captured or uploaded, the application automatically runs inference on the image in the

background and displays the detection results. If either Black Sigatoka or Fusarium Wilt

diseases are detected, the disease name and confidence score will be displayed together with a

mitigation recommendation button, as seen in Fig. 59 and 60. When this mitigation

recommendation button is pressed, it takes the user to a page that contains research-based

mitigation recommendations for the specific detected diseases. This button will not appear

when a healthy banana leaf or stalk is detected (Fig. 61). The detect page, about banana page,

and about diseases page also have a change language feature on the top right where the user

can select either of the two languages supported by this application, which are English and

Kiswahili (Fig. 58). This feature is also included in the settings page, and it converts the entire

application into either English or Kiswahili, as selected. This feature will help the local farmers

77

who do not understand English access the application in Kiswahili.

Figure 59: Banana disease detection mobile application detect page with detection results

for Fusarium Wilt and mitigation recommendation page for the detected

disease

78

Figure 60: Banana disease detection mobile application detect page with detection results

for Black Sigatoka and mitigation recommendation page for the detected

disease

Figure 61: Banana disease detection mobile application detect page with results for a

healthy banana leaf and an image that is not of a banana leaf or stalk

79

The mobile application also provides research-based information about bananas, including

different types of bananas, the banana types that provide the highest yields, the banana types

that have high demand in the market, and the best practices in banana farming in Tanzania (Fig.

62). This banana information was gathered as a requirement from farmers. Furthermore, the

mobile application provides research-based information about Fusarium Wilt and Black

Sigatoka banana diseases. Information about the symptoms, causes, transmission mechanism,

and mitigation recommendations are provided for each disease. Users can prevent the

occurrence of these two banana diseases by knowing their transmission mechanisms and

avoiding them.

Figure 62: Banana disease detection mobile application about banana page and about

diseases page

4.4 Validation of the Performance of the Developed Mobile Application Results

Table 14 summarizes the results of the responses given by farmers to the mobile application

validation questionnaire. From the questionnaire, all but 1 question received a 100% response

of yes from the farmers meaning that these features were working properly and the information

was present. The question about the application running inference automatically in the

80

background using the CNN model received an 80% yes response and 20% no response. This

response was due to the wrong predictions that were given by the application when the

application deployed the TensorFlow Lite version of the CNN deep learning model. To

improve the mobile application’s predictions the mobile application deployed the original CNN

TensorFlow model on a web server and an API was developed to send detection requests from

the mobile application to the server and return responses.

Table 14: Results of the responses given by farmers to the mobile application validation

questionnaire

Questions Yes (%) No (%)

Does the mobile application allow the farmer to capture an image using

the mobile phone camera?

100 0

Does the mobile application allow the farmer to upload an image from

the phone’s gallery?

100 0

Does the mobile application allow the farmer to display the captured

or uploaded image?

100 0

Does the mobile application run inference automatically on the device,

in the background on the captured or uploaded image using the CNN

model?

80 20

Does the mobile application allow the farmer to view detection results? 100 0

Does the mobile application allow the farmer to view mitigation

recommendations when either Black Sigatoka or Fusarium Wilt

diseases are detected?

100 0

Does the mobile application provide farmers with banana information

including different types of bananas, banana types that provide the

highest yields, banana types that have high demand in the market, and

the best practices in banana farming?

100 0

Does the mobile application provide farmers with Black Sigatoka and

Fusarium Wilt banana disease information including causes,

symptoms, transmission mechanism, and mitigation

recommendations?

100 0

Does the mobile application allow the farmer to change language from

English to Swahili and vice versa?

100 0

81

4.5 Discussion

The achieved CNN model accuracy of 91.17% was considered good since a good CNN model

should achieve an accuracy of at least 70% (Maxwell et al., 2021). The CNN model also

yielded a precision of 91.08%, recall of 91.62% and F-measure of 90.55%. Similar results were

obtained by Sanga et al. (2020) when they deployed an Inceptionv3 model, which achieved an

accuracy of 95.41%. Other similar results were obtained by Amara et al. (2017) when they

used the LeNet architecture for the classification of banana leaf diseases and achieved an

accuracy of 92.88%, precision of 92.99%, recall of 92.88%, and F1-score of 92.94%. Similar

results were obtained by another study done by Bhuiyan et al. (2023) when they diagnosed

banana leaf diseases using the BananaSqueezeNet model and achieved an accuracy of 96.25%,

precision of 96.53%, recall of 96.25% and F1-score of 96.17%. Despite this good performance,

this study used a small number of images. As a result, the assessed CNN model in this study is

accurate and suitable for use in the early detection of banana diseases.

In the training times results for the CNN model experiments, the size of the images in KB was

reduced from a maximum of 700 KB for images used in training CNN group 1 to a maximum

of 100 KB for images used in training CNN group 2 to 5. This reduction of size helped the

model to train faster while still making good predictions.

The Mask R-CNN model achieved a mean Average Precision (mAP) of 0.045 29. This result

was obtained while testing in the initial experiments with a few datasets in the early stage of

the research. The Mask R-CNN model was created to be compatible with TensorFlow 1. In the

later stage of the research, TensorFlow 1 was deprecated and only TensorFlow 2 was used. An

update was found for Mask R-CNN which was compatible with TensorFlow 2.4 but later this

too was deprecated. The Mask R-CNN model was therefore not compatible with the current

versions of TensorFlow which resulted in the inability to continue running experiments with

different hyperparameters to improve the mean Average Precision value. A similar study done

by Loyani et al. (2021) for the segmentation of a tomato plant paste named tuta absoluta using

the Mask R-CNN model yielded a mean Average Precision of 85.67%. A similar study done

by Selvaraj et al. (2019) focused on the detection of banana pests and diseases using a Faster

R-CNN model based on ResNet50 and yielded a mean Average Precision of 99%, 70%, 97%,

and 73% for the pseudostem, leaves, fruit bunch, and entire plant respectively.

U-Net group 8 model had the best performance from all the groups with a Dice Coefficient of

82

96.45% and an Intersection over Union of 96.52%. Similar results were obtained by Loyani et

al. (2021) when they segmented a tomato plant paste called tuta absoluta using a U-Net model.

Their model achieved a Dice Coefficient of 82.86% and an Intersection over Union of 78.60%.

Also, similar results were obtained by Wang et al. (2023) when they segmented pear leaf

diseases using an MFBP-UNet model. Their model achieved a Dice metric of 92%, and a Mean

Intersection over Union of 86.15%. The dice coefficient usually has a higher value than

Intersection over Union in the same segmentation performance.

The mobile application developed in this study did not deploy the Mask R-CNN or the U-Net

image segmentation models because these models were not compatible with the flutter_tflite

package used for interacting with deep learning models in the mobile application. The CNN

model was compatible with this flutter package and therefore it was deployed in the mobile

application.

Research shows that smallholder banana growers in East Africa have limited background

knowledge of banana agronomy (CABI, 2019). There is also a limited uptake of

recommendations on banana agronomy from research (CABI, 2019). The mobile application

developed in this study provides research-based information about the banana plant (including

banana types, banana types with most yields, highly demanded banana types and banana

farming) and about Fusarium Wilt and Black Sigatoka banana diseases that can be easily

consumed by farmers to improve their banana farming and production. The mobile application

has an extra label and can predict other things apart from the healthy and diseased banana

plants. Two languages are supported by the mobile application which are Swahili and English.

The Swahili language will help farmers who do not understand the English language to be able

to consume and use the information provided by the application. The provided research-based

information and change language features are improvements from the mobile application

developed by this study when compared to previously developed plant disease detection mobile

application developed by Loyani and Machuve (2021) and Sanga et al. (2020). The mobile

application developed in this study was able to correctly classify images of diseased and

healthy banana plants and other images with a confidence score of more than 90% in less than

5 seconds per image. A similar study done by Hui et al. (2021) developed a mobile application

that deployed an object detection model to detect grape diseases and the application yielded an

accuracy of 97.9%. Another similar study done by Wang and Shabrina (2023) developed a

mobile application that deploys EfficientNetB0 for the multi-class tomato plant disease

83

classification, and the application achieved an accuracy of 91.4%.

84

CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

The objective of this research was to develop a deep-learning image segmentation model for

early identification of banana diseases. To achieve this objective, the study assessed Mask R-

CNN and U-Net image segmentation deep learning architectures, for instance, and semantic

segmentation respectively of Fusarium Wilt and Black Sigatoka banana diseases. The study

also assessed a classification Convolutional Neural Network (CNN) architecture to identify the

two banana diseases. The results of the experiments showed that the Mask R-CNN ResNet101

model yielded a mAP of 0.045 29 in segmenting the two banana diseases. The results also

showed that an Intersection over Union (IoU) of 93.23% and a Dice Coefficient of 96.45% was

achieved by the U-Net model. The CNN model yielded an accuracy of 91.71% in classifying

the two banana diseases. Additionally, the Fusarium Wilt and Black Sigatoka infected banana

leaves and stalks were segmented using the Mask R-CNN and U-Net models.

This study also developed an interactive mobile application for the early detection of Fusarium

Wilt and Black Sigatoka banana diseases. The mobile application deploys a CNN model that

classifies these two diseases, healthy banana leaves, and images that are not of a banana leaf or

stalk. The mobile application was able to correctly classify images with diseases, healthy

images, and images that are not of the banana plant with a confidence of 90% and above in less

than five seconds per image. The application could detect banana diseases at an early stage and

provide research-based mitigation recommendations that extension officers and farmers can

use to avoid yield losses and financial losses. The application also provides research-based

information on banana farming and the two diseases. The feature of supporting English and

Kiswahili languages plays a huge role in helping local farmers in rural areas who do not

understand English. This work demonstrates how deep learning may be used to accurately

identify diseased plants early enough for farmers to take the necessary precautions to reduce

the damaging impacts of these diseases and save their yields.

5.2 Recommendations

This study recommends the Ministry of Agriculture and other agricultural stakeholders

including Non-Governmental Organizations (NGOs) utilize the presented findings in

85

addressing the issue of food insecurity in Tanzania.

Farmers and agricultural extension officers are recommended to automatically detect Fusarium

Wilt and Black Sigatoka diseases using the developed mobile application. They can also put to

good use the research-based information provided by the mobile application and improve

banana farming and production.

Furthermore, future studies could focus on developing a web-based system that will allow the

administrator to update or patch the information on the mobile application easily using a web

interface. The assessed models will be continually improved to provide farmers and extension

officers with robust prediction models.

86

REFERENCES

Afzaal, U., Bhattarai, B., Pandeya, Y. R., & Lee, J. (2021). An instance segmentation model

for strawberry diseases based on mask R-CNN. Sensors, 21(19), 6565.

Altendorf, S. (2019). Food Outlook - Biannual Report on Global Food Markets.

Amara, J., Bouaziz, B., & Algergawy, A. (2017). A Deep Learning-based Approach for Banana

Leaf Diseases Classification. Datenbanksysteme für Business, Technologie und Web.

Arango-Isaza, R. E., Diaz-Trujillo, C., Dhillon, B., Aerts, A., Carlier, J., Crane, C. F., & Kema,

G. H. (2016). Combating a global threat to a clonal crop: banana black Sigatoka

pathogen Pseudocercospora fijiensis (synonym Mycosphaerella fijiensis) genomes

reveal clues for disease control. PLoS Genetics, 12(8), e1005876.

Awati, R. (2022). Convolutional Neural Network (CNN). From TechTarget:

https://www.techtarget.com/searchenterpriseai/definition/convolutional-neural-

network#:~:text=A%20CNN%20is%20a%20kind,the%20network%20architecture%2

0of%20choice.

Bhuiyan, M. A. B., Abdullah, H. M., Arman, S. E., Rahman, S. S., & Al-Mahmud, K. (2023).

BananaSqueezeNet: A very fast, lightweight convolutional neural network for the

diagnosis of three prominent banana leaf diseases. Smart Agricultural Technology, 4,

100214.

Bodapati, J. D., & Veeranjaneyulu, N. (2019). Feature extraction and classification using deep

convolutional neural networks. Journal of Cyber Security and Mobility, 8(2), 61-276.

Brahimi, M., Boukhalfa, K., & Moussaoui, A. (2017). Deep learning for tomato diseases:

Classification and symptoms visualization. Applied Artificial Intelligence, 31(4), 299-

315.

Brownlee, J. (2017). A gentle introduction to transfer learning for deep learning. Machine

Learning Mastery, 20.

Brownlee, J. (2019). What is Deep Learning? From Machine Learning Mastery.

https://machinelearningmastery.com/what-is-deep-learning.

87

Brownlee, J. (2020, 04 08). 4 Types of Classification Tasks in Machine Learning. From towards

data science. https://machinelearningmastery.com/types-of-classification-in-machine-

learning.

Bubici, G., Kaushal, M., Prigigallo, M. I., Gómez-Lama Cabanás, C., & Mercado-Blanco, J.

(2019). Biological control agents against Fusarium wilt of banana. Frontiers in

Microbiology, 10, 445720.

CABI. (2019). Improving banana agronomy practices for small scale farmers in East Africa.

(CABI) Retrieved from CABI: https://www.cabi.org/projects/improving-banana-

agronomy-practices-for-small-scale-farmers-in-east-africa.

Campos, H., Caligari, P. D., Brown, A., Tumuhimbise, R., Amah, D., Uwimana, B., &

Swennen, R. (2017). Bananas and plantains (Musa spp.). Genetic Improvement of

Tropical Crops, 219-240.

Che’Ya, N. N., Mohidem, N. A., Roslin, N. A., Saberioon, M., Tarmidi, M. Z., Arif Shah, J.,

& Man, N. (2022). Mobile computing for pest and disease management using spectral

signature analysis: A review. Agronomy, 12(4), 967.

Daly, A., & Walduck, G. (2006). Fusarium Wilt of Bananas (Panama Disease). Agnote, 151.

Daniel. (2016). Bananas from Africa. http://inafrica24.com/modernity/bananas-from-africa.

Dearing, J. W., & Cox, J. G. (2018). Diffusion of innovations theory, principles, and

practice. Health Affairs, 37(2), 183-190.

Erdem, K. (2020). Understanding Region of Interest - Part 2 (RoI Align).

https://erdem.pl/2020/02/understanding-region-of-interest-part-2-ro-i-align.

Erima, R., Kubiriba, J., Komutunga, E., Nowakunda, K., Namanya, P., Seruga, R., &

Tushemereirwe, W. K. (2017). Banana pests and diseases spread to higher altitudes due

to increasing temperature over the last 20 years. African Journal of Environmental

Science and Technology, 601-608.

Etebu, E., & Young-Harry, W. (2011). Control of black Sigatoka disease: Challenges and

prospects. African Journal of Agricultural Research, 6(3), 508-514.

88

FAO. (2017). Global Programme on Banana Fusarium Wilt Disease.

FAO. (2021). Acting together against banana diseases in Africa. From Food and Agriculture

Organizanion of United Nation. http://www.fao.org/agriculture/crops/news-events-

bulletins/detail/en/item/36259/icode/en/?no_cache=1.

FAOSTAT. (2021). Crops and livestock products. https://www.fao.org/food-agriculture-

statistics/statistical-domains/crop-livestock-and-food/en.

Fillipa, P. (2022). Machine Learning Essentials: What is Data Annotation?

https://resources.defined.ai/blog/machine-learning-essentials-what-is-data-annotation.

He, K., Gkioxari, G., Doll´ar, P., & Girshick, R. (2018). Mask R-CNN. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 42(2).

Iyer, N. (2020). Instance Segmentation. https://towardsdatascience.com/tagged/instance-

segmentation.

Johanson, A., Tushemereirwe, W. K., & Karamura, E. B. (1996). Distribution of Sigatoka leaf

spots in Uganda as determined by species-specific polymerase chain reaction (PCR). I

International Symposium on Banana: I International Conference on Banana and

Plantain for Africa, 540, 319-324.

Jomanga, K. E., & Lucas, S. S. (2021). The Effects, Distribution and Management Options for

Major Banana Diseases in Tanzania. International Journal of Current Science

Research and Review, 1276-1295.

Jomanga, K. E., Lucas, S. S., & Mgenzi, A. R. (2022). The Review on The Importance of

Banana and Plantain Varieties that were/are Regarded as the Gold of Some Tribes in

Tanzania. International Journal of Novel Research in Life Sciences, 50-61.

Jordan, J. (2018). An Overview of Semantic Image Segmentation.

https://www.jeremyjordan.me/semantic-segmentation.

Hevner, A., Chatterjee, S., Hevner, A., & Chatterjee, S. (2010). Design science research in

information systems. Design Research in Information Systems: Theory and Practice,

9-22.

89

Hurwitz, J., Kirsch, D., & Wiley, J. (2018). Machine Learning Machine Learning For

Dummies. John Wiley & Sons, Inc.

Goyal, M., Guo, J., Hinojosa, L., Hulsey, K., & Pedrosa, I. (2022). Automated kidney

segmentation by mask R-CNN in T2-weighted magnetic resonance imaging.

In Medical Imaging 2022: Computer-Aided Diagnosis, 12033, 803-808.

Kimunye, J., Were, E., Swennen, R., Viljoen, A., & Mahuku, G. (2021). Sources of resistance

to Pseudocercospora fijiensis, the cause of black Sigatoka in banana. Plant

Pathology, 70(7), 1651-1664.

Lai, P. C. (2017). The literature review of technology adoption models and theories for the

novelty technology. Journal of Information Systems and Technology Management, 14,

21-38.

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic

segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 3431-3440.

Loyani, L. K., Bradshaw, K., & Machuve, D. (2021). Segmentation of Tuta Absoluta’s damage

on tomato plants: A computer vision approach. Applied Artificial Intelligence, 35(14),

1107-1127.

Loyani, L., & Machuve, D. (2021). A deep learning-based mobile application for segmenting

tuta absoluta’s damage on tomato plants. Engineering, Technology & Applied Science

Research, 11(5), 7730-7737.

Marr, B. (2018). What Are Artificial Neural Networks - A Simple Explanation For Absolutely

Anyone. https://www.forbes.com/sites/bernardmarr/2018/09/24/what-are-artificial-

neural-networks-a-simple-explanation-for-absolutely-anyone.

Maxwell, A. E., Warner, T. A., & Guillén, L. A. (2021). Accuracy assessment in convolutional

neural network-based deep learning remote sensing studies. Part 1: Literature

review. Remote Sensing, 13(13), 2450.

Mduma, N., & Leo, J. (2023). Dataset of banana leaves and stem images for object detection,

classification and segmentation: A case of Tanzania. Data in Brief, 49, 109322.

90

Mittal, S., & Hasija, Y. (2020). Applications of deep learning in healthcare and

biomedicine. Deep Learning Techniques for Biomedical and Health Informatics, 57-

77.

Mkonyi, L., Rubanga, D., Richard, M., Zekeya, N., Sawahiko, S., Maiseli, B., & Machuve, D.

(2020). Early identification of Tuta absoluta in tomato plants using deep

learning. Scientific African, 10, e00590.

Moroney, L. (2021). AI and Machine Learning for Coders: A Programmer's Guide to Artificial

Intelligence. O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA

95472.

Muimba-Kankolongo, A. (2018). Food crop production by smallholder farmers in Southern

Africa: Challenges and opportunities for improvement. Academic Press, Cambridge,

MA, San Diego, CA.

Nakatumba-Nabende, J., Akera, B., Tusubira, J. F., Nsumba, S., & Mwebaze, E. (2020). A

dataset of necrotized cassava root cross-section images. Data in Brief, 32, 106170.

Naoki. (2017). Up-sampling with transposed convolution. https://kikaben.com/up-sampling-

with-transposed-convolution.

Narayanan, K. L., Krishnan, R. S., Robinson, Y. H., Julie, E. G., Vimal, S., Saravanan, V., &

Kaliappan, M. (2022). Banana plant disease classification using hybrid convolutional

neural network. Computational Intelligence and Neuroscience, 2022.

NBS, N. B., Agriculture, M. O., Fisheries, M. O., President's Office, R. A., Trade, M. O., &

Ministry of Agriculture, I. N. (2021). National Sample Census of Agriculture

2019/2020.

Ng, H. F., Lin, C. Y., Chuah, J. H., Tan, H. K., & Leung, K. H. (2021). Plant disease detection

mobile application development using deep learning. 2021 International Conference

on Computer & Information Sciences, 34-38.

Nirmal, M. D., Jadhav, P., & Kadu, N. B. (2022). Farmer Friendly Smart App for Pomegranate

Disease Identification. 2022 International Conference on Edge Computing and

Applications, 884-890.

91

Owomugisha, G., Quinn, J. A., Mwebaze, E., & Lwasa, J. (2014). Automated vision-based

diagnosis of banana bacterial wilt disease and black sigatoka disease. International

Conference on the Use of Mobile ICT in Africa, 1-5.

Peters, J. F. (2017). Foundations of Computer Vision. Springer.

Ploetz, R. C., Kema, G. H., & Ma, L. J. (2015). Impact of diseases on export and smallholder

production of banana. Annual Review of Phytopathology, 53, 269-288.

Tutorialspoint. (2015). Artificial Inteligence - Intelligent Systems.

https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligent_systems.ht

m.

Ral, R. (2020). Introduction to Deep Learning. International Journal of Scientific Development

and Research, 5(9),369-371.

Ramadhani, K., Machuve, D., & Jomanga, K. (2017). Identification and Analysis of Factors in

Management of Banana Fungal Diseases: Case of Sigatoka (Mycosphaerella fijiensis.

Mulder and Fusarium (Fusarium Oxysporum f. sp. cubense (foc) Diseases in Arumeru

District. Journal of Biodiversity and Environmental Sciences, 11, 69-75.

Ramcharan, A., Baranowski, K., McCloskey, P., Ahmed, B., Legg, J., & Hughes, D. P. (2017).

Deep learning for image-based cassava disease detection. Frontiers in Plant Science, 8,

1852.

Rasche, C. (2019). Computer Vision.

Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 39(6), 1137 - 1149.

Ronneberger, O. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation.

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net.

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for

Biomedical Image Segmentation. International Conference on Medical Image

Computing and Computer-Assisted Intervention, 234-241.

92

Russell, B. C., Torralba, A., Murphy, K. P., & Freeman, W. T. (2008). LabelMe: A Database

and Web-Based Tool for Image Annotation. International Journal of Computer Vision,

77(1-3), 157–173.

Sanga, S. (2020). Development of an early detection tool for banana diseases: A case of Mbeya

and Arusha region (Doctoral dissertation, NM-AIST).

Sanga, S. L., Machuve, D., & Jomanga, K. (2020). Mobile-based Deep Learning Models for

Banana Disease Detection. Engineering, Technology & Applied Science Research,

10(3), 5674-5677.

Sanga, S., Mero, V., Machuve, D., & Mwanganda, D. (2020). Mobile-based deep learning

models for banana diseases detection. arXiv preprint arXiv:2004.03718.

Selvaraj, M. G., Vergara, A., Ruiz, H., Safari, N., Elayabalan, S., Ocimati, W., & Blomme, G.

(2019). AI-powered banana diseases and pest detection. Plant Methods, 15, 1-11.

Shijie, J., Peiyi, J., & Siping, H. (2017). Automatic detection of tomato diseases and pests based

on leaf images. 2017 Chinese Automation Congress, 2537-2510.

Shimwale, M. (2021). Hope for Tanzanian banana farmers with the official release of new

“matooke” hybrids. https://www.iita.org/news-item/hope-for-tanzanian-banana-

farmers-with-the-official-release-of-new-matooke-hybrids.

Singh, O. (2023). What are artificial intelligence (AI) crypto coins, and how do they work?

https://cointelegraph.com/explained/what-are-artificial-intelligence-ai-crypto-coins-

and-how-do-they-work.

Soares, J. M., Rocha, A. J., Nascimento, F. S., Santos, A. S., Miller, R. N., Ferreira, C. F., &

Amorim, E. P. (2021). Genetic improvement for resistance to black Sigatoka in

bananas: A systematic review. Frontiers in Plant Science, 12, 657916.

Suleiman, R. (2018). Local and regional variations in conditions for agriculture and food

security in Tanzania. A review. AgriFoSe2030 Report, (10).

Tyagi, M. (2021). Image Segmentation: Part 1. From Towards Data Science:

https://towardsdatascience.com/image-segmentation-part-1-9f3db1ac1c50.

93

United Nations. (2021). The Sustainable Development Goal Report 2021.

Vézina, A. (2022). Fusarium wilt of banana. https://www.promusa.org/Fusarium+wilt.

Vézina, A., & Rouard, M. (2021). Fusarium oxysporum f. sp. cubense. From ProMusa:

https://www.promusa.org/Fusarium+oxysporum+f.+sp.+cubense.

Vézina, A., & Van-den-Bergh, I. (2020). Black leaf streak. From ProMusa:

https://www.promusa.org/Black+leaf+streak.

Vidhya, N. P., & Priya, R. (2022). Detection and Classification of Banana Leaf diseases using

Machine Learning and Deep Learning Algorithms. 2022 IEEE 19th India Council

International Conference, 1-6.

Singh, V., & Misra, A. K. (2017). Detection of plant leaf diseases using image segmentation

and soft computing techniques. Information Processing in Agriculture, 4(1), 41-49.

Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance

model: Four longitudinal field studies. Management Science, 46(2), 186-204.

Voora, V., Larrea, C., & Bermudez, S. (2020). Global market report: Bananas. Winnipeg, MB,

Canada: International Institute for Sustainable Development.

Wang, A. R., & Shabrina, N. H. (2023). A deep learning-based mobile app system for visual

identification of tomato plant disease. International Journal of Electrical and Computer

Engineering, 13(6), 6992-7004.

Wang, H., Ding, J., He, S., Feng, C., Zhang, C., Fan, G., & Zhang, Y. (2023). MFBP-UNet: A

network for pear leaf disease segmentation in natural agricultural

environments. Plants, 12(18), 3209.

Wang, Q., Qi, F., Sun, M., Qu, J., & Xue, J. (2019). Identification of tomato disease types and

detection of infected areas based on deep convolutional neural networks and object

detection techniques. Computational Intelligence and Neuroscience, 2019.

Wood, T. (2020). Convolutional Neural Network. https://deepai.org/machine-learning-

glossary-and-terms/convolutional-neural-network.

94

Zhang, X. (2021). Understanding Mask R-CNN Basic Architecture.

https://www.shuffleai.blog/blog/Understanding_Mask_RCNN_Basic_Architecture.ht

ml.

Zhu, P., Isaacs, J., Fu, B., & Ferrari, S. (2017). Deep learning feature extraction for target

recognition and classification in underwater sonar images. In 2017 IEEE 56th Annual

Conference on Decision and Control, 2724-2731.

Zou, K. H., Warfield, S. K., Bharatha, A., Tempany, C. M., Kaus, M. R., Haker, S. J., &

Kikinis, R. (2004). Statistical validation of image segmentation quality based on a

spatial overlap index1: scientific reports. Academic Radiology, 11(2), 178-189.

95

APPENDICES

Appendix 1: Questions that Were Used to Come Up with the Functional and Non-

Functional Requirements

Question

Number

Question

1 What features should I included in the mobile application?

2 What information should I add to the mobile application that will be of use

to farmers?

96

Appendix 2: Mobile Application Validation Questionnaire

Questions / Maswali Yes /

Ndio

No /

Hapana

Does the mobile application allow the farmer to capture an image using

the mobile phone camera?

Je, programu ya simu inamruhusu mkulima kunasa picha kwa kutumia

kamera ya simu ya mkononi?

Does the mobile application allow the farmer to upload an image from

the phone’s gallery?

Je, programu ya simu inamruhusu mkulima kupakia picha kutoka

kwenye ghala ya simu?

Does the mobile application allow the farmer to display the captured or

uploaded image?

Je, programu ya simu inamruhusu mkulima kuonyesha picha

iliyonaswa au kupakiwa?

Does the mobile application run inference automatically on the device,

in the background on the captured or uploaded image using the CNN

model?

Je, programu ya simu huendesha makisio kiotomatiki kwenye kifaa,

chinichini kwenye picha iliyonaswa au kupakiwa kwa kutumia muundo

wa CNN?

Does the mobile application allow the farmer to view detection results?

Je, programu ya simu inamruhusu mkulima kuona matokeo ya

ugunduzi?

Does the mobile application allow the farmer to view mitigation

recommendations when either Black Sigatoka or Fusarium Wilt

diseases are detected?

Je, programu ya simu ya mkononi inamruhusu mkulima kuona

mapendekezo ya kupunguza wakati magonjwa ya Black Sigatoka au

Fusarium Wilt yanapogunduliwa?

Does the mobile application provide farmers with banana information

including different types of bananas, banana types that provide the

highest yields, banana types that have high demand in the market, and

the best practices in banana farming?

97

Je, programu ya simu ya mkononi inawapa wakulima taarifa za ndizi

ikiwa ni pamoja na aina tofauti za ndizi, aina za ndizi zinazotoa mavuno

mengi zaidi, aina za ndizi zinazohitajika sana sokoni, na mbinu bora za

kilimo cha ndizi?

Does the mobile application provide farmers with Black Sigatoka and

Fusarium Wilt banana disease information including causes,

symptoms, transmission mechanism, and mitigation recommendations?

Je, programu ya simu ya mkononi huwapa wakulima taarifa za ugonjwa

wa ndizi za Black Sigatoka na Fusarium Wilt ikiwa ni pamoja na

sababu, dalili, utaratibu wa maambukizi na mapendekezo ya

kupunguza?

Does the mobile application allow the farmer to change language from

English to Swahili and vice versa?

Je, programu ya simu inamruhusu mkulima kubadilisha lugha kutoka

Kiingereza hadi Kiswahili na kinyume chake?

98

Appendix 3: Mask R-CNN Model Source Code

Importing important libraries

import os

import sys

import random

import math

import re

import time

import numpy as np

import cv2

import cython

import scipy

import json

import pandas as pd

import datetime

from math import nan, isnan

Used in plotting

import matplotlib

import matplotlib.pyplot as plt

import matplotlib.patches as patches

import matplotlib.lines as lines

from matplotlib.patches import Polygon

from skimage.io import imread, imshow, imread_collection,

concatenate_images

from skimage.transform import resize

Importing Mask R-CNN libraries

from mrcnn.config import Config

from mrcnn import utils

import mrcnn.model as modellib

from mrcnn import visualize

from mrcnn.model import log

from mrcnn.visualize import display_images

%matplotlib inline

Defining configurations

class DiseasesConfig(Config):

 """Configuration for training on the dataset.

 Derives from the base Config class and overrides values specific

 to the dataset.

 """

 # Give the configuration a recognizable name

 NAME = "diseases"

99

 # Train on 1 GPU and 1 images per GPU. We can put multiple images

on each

 # GPU. Batch size is (GPU_COUNT * images_per_GPU).

 GPU_COUNT = 1

 IMAGES_PER_GPU = 1 # Initially used 1

 # Number of classes (including background)

 NUM_CLASSES = 1 + 3 # background + black_sigatoka, fusarium_wilt,

healthy

 # Use small images for faster training. Set the limits of the small

side

 IMAGE_MIN_DIM = 512

 IMAGE_MAX_DIM = 512

 # Aim to allow ROI sampling to pick 33% positive ROIs.

 TRAIN_ROIS_PER_IMAGE = 200

 # set number of epoch

 STEPS_PER_EPOCH = 150

 # set validation steps

 VALIDATION_STEPS = 50

 # Backbone network architecture

 # Supported values are: resnet50, resnet101.

 BACKBONE = 'resnet101'

 # The strides of each layer of the FPN Pyramid.

 BACKBONE_STRIDES = [4, 8, 16, 32, 64]

 # Anchor stride

 RPN_ANCHOR_STRIDE = 1

 # Non-max suppression threshold to filter RPN proposals.

 RPN_NMS_THRESHOLD = 0.9 #default was 0.7

 # If enabled, resizes instance masks to a smaller size to reduce

 # memory load. Recommended when using high-resolution images.

 USE_MINI_MASK = True

 MINI_MASK_SHAPE = (28, 28)

 # Use smaller anchors because our image and objects are small

 RPN_ANCHOR_SCALES = (8, 16, 64, 128, 256)

 MAX_GT_INSTANCES = 100

 POST_NMS_ROIS_INFERENCE = 1000

 POST_NMS_ROIS_TRAINING = 2000

100

 # Minimum probability value to accept a detected instance

 DETECTION_MIN_CONFIDENCE = 0.7

 WEIGHT_DECAY = 0.0001

config = DiseasesConfig()

config.display()

class InferenceConfig(DiseasesConfig):

 # Set batch size to 1 since we'll be running inference on

 # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU

 GPU_COUNT = 1

 IMAGES_PER_GPU = 1

Custom function to load the dataset

source = "diseases"

Dataset

from skimage.io import imread, imshow, imread_collection,

concatenate_images

from skimage.transform import resize

class CustomDataset(utils.Dataset):

 def load_custom(self, dataset_dir, subset):

 """Load a subset of the Banana Disease dataset.

 dataset_dir: Root directory of the dataset.

 subset: Subset to load: train or test

 subset_class: Subset to load: black_sigatoka, fusarium_wilt or

healthy

 """

 # Train or test dataset?

 assert subset in ["train2", "test2"]

 dataset_dir = os.path.join(dataset_dir, subset)

 print(dataset_dir)

 # Train or validation dataset

 filenames = os.listdir(dataset_dir)

 jsonfiles,annotations=[],[]

 for filename in filenames:

 if filename.endswith(".json"):

 jsonfiles.append(filename)

 annotation =

json.load(open(os.path.join(dataset_dir,filename)))

101

 # Insure this picture is in this dataset

 imagename = annotation['imagePath']

 if not

os.path.isfile(os.path.join(dataset_dir,imagename)):

 print(imagename)

 continue

 if len(annotation["shapes"]) == 0:

 continue

 # you can filter what you don't want to load

 annotations.append(annotation)

 print("In {source} {subset} dataset we have {number:d}

annotation files."

 .format(source=source,

subset=subset,number=len(jsonfiles)))

 print("In {source} {subset} dataset we have {number:d} valid

annotations."

 .format(source=source,

subset=subset,number=len(annotations)))

 labelslist = []

 for annotation in annotations:

 # Get the x, y coordinaets of points of the polygons that

make up

 # the outline of each object instance. These are stores in

the

 # shape_attributes (see json format above)

 shapes = []

 classids = []

 for shape in annotation["shapes"]:

 # first we get the shape classid

 label = shape["label"]

 if labelslist.count(label) == 0:

 labelslist.append(label)

 classids.append(labelslist.index(label)+1)

 shapes.append(shape["points"])

 # load_mask() needs the image size to convert polygons to

masks.

 width = annotation["imageWidth"]

 height = annotation["imageHeight"]

 self.add_image(

 source,

 image_id=annotation["imagePath"], # use file name as a

unique image id

 path=os.path.join(dataset_dir,annotation["imagePath"]),

 width=width, height=height,

102

 shapes=shapes, classids=classids)

 print("In {source} {subset} dataset we have {number:d} class

item"

 .format(source=source,

subset=subset,number=len(labelslist)))

 print(labelslist)

 # Add classes.

 for labelid, labelname in enumerate(labelslist):

 self.add_class(source,labelid,labelname)

 def load_mask(self,image_id):

 """

 Generate instance masks for an image.

 Returns:

 masks: A bool array of shape [height, width, instance count]

with one mask per instance.

 class_ids: a 1D array of class IDs of the instance masks.

 """

 # If not the source dataset you want, delegate to parent class.

 image_info = self.image_info[image_id]

 if image_info["source"] != source:

 return super(self.__class__, self).load_mask(image_id)

 # Convert shapes to a bitmap mask of shape

 # [height, width, instance_count]

 info = self.image_info[image_id]

 mask = np.zeros([info["height"], info["width"],

len(info["shapes"])], dtype=np.uint8)

 #printsx,printsy=zip(*points)

 for idx, points in enumerate(info["shapes"]):

 # Get indexes of pixels inside the polygon and set them to

1

 pointsy,pointsx = zip(*points)

 rr, cc = skimage.draw.polygon(pointsx, pointsy)

 mask[rr, cc, idx] = 1

 masks_np = mask.astype(bool)

 classids_np = np.array(image_info["classids"]).astype(np.int32)

 # Return mask, and array of class IDs of each instance. Since

we have

 # one class ID only, we return an array of 1s

 return masks_np, classids_np

 def image_reference(self,image_id):

 """Return the path of the image."""

 info = self.image_info[image_id]

 if info["source"] == source:

103

 return info["path"]

 else:

 super(self.__class__, self).image_reference(image_id)

Configuring the dataset

Configuring the datasets

config = DiseasesConfig()

dataset_train, dataset_val = CustomDataset(), CustomDataset()

dataset_train.load_custom(dataset_path,"train2")

dataset_train.prepare()

dataset_val.load_custom(dataset_path,"test2")

dataset_val.prepare()

config.NUM_CLASSES = len(dataset_train.class_info)

Defining the model and loading weights

model = modellib.MaskRCNN(mode="training", config=DiseasesConfig(),

model_dir=MODEL_DIR)

model.keras_model.summary()

Train new model using coco dataset

print("Loading weights ", weights_path)

model.load_weights(weights_path, by_name=True, exclude=[

 "mrcnn_class_logits", "mrcnn_bbox_fc",

 "mrcnn_bbox", "mrcnn_mask"])

Training the head layers

"""Train the model."""

*** This training schedule is an example. Update to your needs ***

print("Training network heads")

start_train = time.time()

model.train(dataset_train, dataset_val,

 learning_rate=config.LEARNING_RATE,

 epochs=5,

 layers='heads')

augmentation=seq_of_aug)

history = model.keras_model.history.history

end_train = time.time()

minutes = round((end_train - start_train) / 60, 2)

print(f'Training took {minutes} minutes')

Plotting the model

history.keys()

Get training statistics

#total loss

loss = history['loss']

104

val_loss = history['val_loss']

#rpn classification loss

rpn_class_loss = history['rpn_class_loss']

val_rpn_class_loss = history['val_rpn_class_loss']

#rpn bounding box loss

rpn_bbox_loss = history['rpn_bbox_loss']

val_rpn_bbox_loss = history['val_rpn_bbox_loss']

#Mask rcnn classification loss

mrcnn_class_loss = history['mrcnn_class_loss']

val_mrcnn_class_loss = history['val_mrcnn_class_loss']

#Mask rcnn bounding box loss

mrcnn_bbox_loss = history['mrcnn_bbox_loss']

val_mrcnn_bbox_loss = history['val_mrcnn_bbox_loss']

#mask loss

mrcnn_mask_loss = history['mrcnn_mask_loss']

val_mrcnn_mask_loss = history['val_mrcnn_mask_loss']

epochs = range(len(loss))

Plot train & val loss

plt.plot(epochs, loss, 'ro-', label='Training loss')

plt.plot(epochs, val_loss, 'y', label='Validation loss')

plt.title('Training and validation loss')

plt.ylabel('Loss')

plt.xlabel('Epoch')

plt.legend()

plt.figure()

Plot train & val rpn_class_loss

plt.plot(epochs, rpn_class_loss, 'ro-', label='rpn_class_loss')

plt.plot(epochs, val_rpn_class_loss, 'y', label='val_rpn_class_loss')

plt.title('1. rpn_class_loss')

plt.ylabel('Loss')

plt.xlabel('Epoch')

plt.legend()

plt.figure()

Plot train & val rpn_bbox_loss

plt.plot(epochs, rpn_bbox_loss, 'ro-', label='rpn_bbox_loss')

plt.plot(epochs, val_rpn_bbox_loss, 'y', label='val_rpn_bbox_loss')

plt.title('2. rpn_bbox_loss')

plt.ylabel('Loss')

plt.xlabel('Epoch')

plt.legend()

plt.figure()

Plot train & val mrcnn_class_loss

plt.plot(epochs, mrcnn_class_loss, 'ro-', label='mrcnn_class_loss')

105

plt.plot(epochs, val_mrcnn_class_loss, 'y',

label='val_mrcnn_class_loss')

plt.title('3. mrcnn_class_loss')

plt.ylabel('Loss')

plt.xlabel('Epoch')

plt.legend()

plt.figure()

Plot train & val mrcnn_bbox_loss

plt.plot(epochs, mrcnn_bbox_loss, 'ro-', label='mrcnn_bbox_loss')

plt.plot(epochs, val_mrcnn_bbox_loss, 'y', label='val_mrcnn_bbox_loss')

plt.title('4. mrcnn_bbox_loss')

plt.ylabel('Loss')

plt.xlabel('Epoch')

plt.legend()

plt.figure()

Plot train & val mrcnn_mask_loss

plt.plot(epochs, mrcnn_mask_loss, 'ro-', label='mrcnn_mask_loss')

plt.plot(epochs, val_mrcnn_mask_loss, 'y', label='val_mrcnn_mask_loss')

plt.title('5. mrcnn_mask_loss')

plt.ylabel('Loss')

plt.xlabel('Epoch')

plt.legend()

plt.show()

Function to test the model

def test(model, image_path = None, video_path=None, savedfile=None):

 assert image_path or video_path

 class_names = ['Background', 'healthy', 'BS', 'FW']

 # Image or video?

 if image_path:

 # Run model detection and generate the color splash effect

 print("Running on {}".format(image_path))

 # Read image

 image = skimage.io.imread(image_path)

 # Detect objects

 r = model.detect([image], verbose=1)[0]

 # Colorful

 import matplotlib.pyplot as plt

 _, ax = plt.subplots()

 visualize.display_instances(image, boxes=r['rois'],

masks=r['masks'],

 class_ids = r['class_ids'], class_names=class_names,

scores=r['scores'],

106

 title = "Banana Diseases Classification", ax = ax,

show_mask=True, show_bbox=True,)

 # Save output

 if savedfile == None:

 file_name =

"test_{:%Y%m%dT%H%M%S}.png".format(datetime.datetime.now())

 else:

 file_name = savedfile

 plt.savefig(file_name)

 #skimage.io.imsave(file_name, testresult)

 elif video_path:

 pass

 print("Saved to ", file_name)

Testing the model

model = modellib.MaskRCNN(mode="inference", config=InferenceConfig(),

model_dir=MODEL_DIR)

Get path to saved weights

Either set a specific path or find last trained weights

model_path = os.path.join(ROOT_DIR, ".h5 file name here")

model_path = model.find_last()

Load trained weights

print("Loading weights from ", model_path)

model.load_weights(model_path, by_name=True)

import os

we test all models trained on the dataset in different stage

image_path =

'/content/drive/MyDrive/BananaDiseaseClassificationModel/Mask_RCNN/Data

set/test_old/FW_1545.jpg'

video_path =

'/content/drive/MyDrive/BananaDiseaseClassificationModel/Mask_RCNN/Data

set/test_old/FW_1545.jpg'

weights_path =

'/content/drive/MyDrive/BananaDiseaseClassificationModel/Mask_RCNN/logs

/diseases20230305T1642'

print(os.getcwd())

filenames = os.listdir(weights_path)

for filename in filenames:

 if filename.endswith(".h5"):

 print(f"Load weights from {filename}")

 model.load_weights(os.path.join(weights_path,

filename),by_name=True)

 savedfile_name = os.path.splitext(filename)[0] + ".jpg"

107

 test(model, image_path=image_path, video_path=video_path,

savedfile=savedfile_name)

Calculating the mean Average Precision

Compute VOC-Style mAP @ IoU=0.5

Running on 30 images. Increase for better accuracy.

image_ids = np.random.choice(dataset_val.image_ids,

len(dataset_val.image_ids))

APs = []

for image_id in image_ids:

 # Load image and ground truth data

 image, image_meta, gt_class_id, gt_bbox, gt_mask =\

 modellib.load_image_gt(dataset_val, InferenceConfig(),

 image_id, use_mini_mask=False)

 molded_images = np.expand_dims(modellib.mold_image(image,

InferenceConfig()), 0)

 # Run object detection

 results = model.detect([image], verbose=0)

 r = results[0]

 # Compute AP

 AP, precisions, recalls, overlaps =\

 utils.compute_ap(gt_bbox, gt_class_id, gt_mask,

 r["rois"], r["class_ids"], r["scores"],

r['masks'])

 APs.append(AP)

print("APs", APs)

print("Number of nan in APs List: ", len(APs) -

np.count_nonzero(~np.isnan(APs)))

APs = [x for x in APs if isnan(x) == False]

print("APs", APs)

print("mAP: ", np.mean(APs))

108

Appendix 4: The U-Net Model Source Code

Install keras-unet

pip install keras-unet

Import Libraries

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

import glob

import os

import sys

import time

import math

import datetime

from PIL import Image

from tqdm import tqdm

Load images and their corresponding masks

masks = glob.glob("*.png")

orgs = list(map(lambda x: x.replace(".png", ".jpg"), masks))

Rendering the image in the right orientation

for image in orgs:

 img = Image.open(image)

 name = img.filename

 if hasattr(img, "_getexif") and img._getexif() is not None:

 exif = dict(img._getexif().items())

 orientation = exif.get(274)

 # Rotate the img based on the orientation metadata

 if orientation == 3:

 img = img.rotate(180, expand=True)

 elif orientation == 6:

 img = img.rotate(270, expand=True)

 elif orientation == 8:

 img = img.rotate(90, expand=True)

 img.save(name, 'JPEG')

Resizing the images and their corresponding masks then convert them into NumPy arrays

with tf.device(device_name): #use. GPU

 for n, id_ in tqdm(enumerate(orgs), total=len(orgs)):

109

 imgs_list = []

 masks_list = []

 for image, mask in zip(orgs, masks):

 imgs_list.append(np.array(Image.open(image).resize((512,512))))

 masks_list.append(np.array(Image.open(mask).resize((512,512))))

 imgs_np = np.asarray(imgs_list)

 masks_np = np.asarray(masks_list)

Save the NumPy Array in Drive

np.save('imgs_np', imgs_np);

np.save('masks_np', masks_np);

load the NumPy arrays from drive

imgs_np = np.load('imgs_np.npy')

masks_np = np.load('masks_np.npy')

Splitting the data into train and validation sets

from sklearn.model_selection import train_test_split

x_train, x_val, y_train, y_val = train_test_split(x, y, test_size=0.2,

random_state=0)

print("x_train: ", x_train.shape)

print("y_train: ", y_train.shape)

print("x_val: ", x_val.shape)

print("y_val: ", y_val.shape)

Prepare train generator with data augmentation

from keras_unet.utils import get_augmented

train_gen = get_augmented(

 x_train, y_train, batch_size=2,

 data_gen_args = dict(

 rotation_range=5.,

 width_shift_range=0.05,

 height_shift_range=0.05,

 shear_range=40,

 zoom_range=0.2,

 horizontal_flip=True,

 vertical_flip=True,

 fill_mode='constant'

))

110

Configure the model

from keras_unet.models import custom_unet

input_shape = x_train[0].shape

model = custom_unet(

 input_shape,

 filters=32,

 use_batch_norm=True,

 dropout=0.3,

 dropout_change_per_layer=0.0,

 num_layers=4

)

model.summary()

Compile the model

from keras.callbacks import ModelCheckpoint

model_filename = 'banana_segm_model.h5'

callback_checkpoint = ModelCheckpoint(

 model_filename,

 verbose=1,

 monitor='val_loss',

 save_best_only=True,

)

#from keras.optimizers import Adam, SGD

from tensorflow.keras.optimizers import Adam, SGD

from keras_unet.metrics import iou, iou_thresholded, dice_coef

from keras_unet.losses import jaccard_distance

with tf.device(device_name):

 model.compile(

 optimizer=SGD(learning_rate=0.001, momentum=0.99),

 loss=jaccard_distance,

 metrics=[iou, iou_thresholded, dice_coef]

)

Train the model

start_train = time.time()

history = model.fit_generator(

 train_gen,

 steps_per_epoch=400,

 epochs=100,

 validation_data=(x_val, y_val),

 callbacks=[callback_checkpoint]

111

)

end_train = time.time()

minutes = round((end_train - start_train) / 60, 2)

print(f'Training took {minutes} minutes')

Plotting the model

history.history.keys()

Get training statistics

#iou

iou_thres = history.history['iou_thresholded']

val_iou_thres = history.history['val_iou_thresholded']

#loss

loss = history.history['loss']

val_loss = history.history['val_loss']

#dice coef

dice = history.history['dice_coef']

val_dice = history.history['val_dice_coef']

epochs = range(len(iou_thres))

Plot train & val iou

plt.plot(epochs, iou_thres, 'b', label='iou')

plt.plot(epochs, val_iou_thres, 'y', label='val_iou')

plt.title('Training and validation IoU')

plt.ylabel('IoU')

plt.xlabel('Epoch')

plt.legend()

plt.figure()

Plot train & val dice

plt.plot(epochs, dice, 'r', label='dice_coef')

plt.plot(epochs, val_dice, 'y', label='val_dice_coef')

plt.title('Training and validation Dice Coefficient')

plt.ylabel('Dice Coefficient')

plt.xlabel('Epoch')

plt.legend()

plt.figure()

Plot train & val loss

plt.plot(epochs, loss, 'r', label='Training loss')

plt.plot(epochs, val_loss, 'g', label='Validation loss')

plt.title('Training and validation loss')

plt.ylabel('Loss')

plt.xlabel('Epoch')

plt.legend()

112

plt.show()

Plot original image, ground truth, prediction, and overlay

model_filename =

"/content/drive/MyDrive/BananaDiseaseClassificationModel/UNet/dataset7/

batch13/banana_segm_model.h5"

model.load_weights(model_filename)

y_pred = model.predict(x_val)

from keras_unet.utils import plot_imgs

plot_imgs(org_imgs=x_val, mask_imgs=y_val, pred_imgs=y_pred,

nm_img_to_plot=10)

Convert the model into TensorFlow Lite

Convert the model.

converter =

tf.lite.TFLiteConverter.from_keras_model(model) #

Convert a saved model with tf.lite.TFLiteConverter.from_saved_model()

tflite_model = converter.convert()

Save the model.

with

open('/content/drive/MyDrive/BananaDiseaseClassificationModel/UNet/data

set7/batch13/unet_model.tflite', 'wb') as f:

 f.write(tflite_model)

113

Appendix 5: The CNN Model Source Code

Import libraries

Import Tensorflow

import tensorflow as tf

import os

import time

import matplotlib.pyplot as plt

import numpy as np

Height_size = 512

Width_size = 512

Batch_Size = 32

Build the model

model = tf.keras.models.Sequential([

 # Note the input shape is the desired size of the image 512x512

with 3 bytes color

 # This is the first convolution

 tf.keras.layers.Conv2D(16, (3,3), activation='relu',

input_shape=(Height_size, Width_size, 3)),

 tf.keras.layers.MaxPooling2D(2, 2),

 # Define a dropout regularization layer.

 tf.keras.layers.Dropout(rate=0.2),

 # The second convolution

 tf.keras.layers.Conv2D(32, (3,3), activation='relu'),

 tf.keras.layers.MaxPooling2D(2,2),

 # Define a dropout regularization layer.

 tf.keras.layers.Dropout(rate=0.2),

 # The third convolution

 tf.keras.layers.Conv2D(64, (3,3), activation='relu'),

 tf.keras.layers.MaxPooling2D(2,2),

 # Define a dropout regularization layer.

 tf.keras.layers.Dropout(rate=0.2),

 # The fourth convolution

 tf.keras.layers.Conv2D(64, (3,3), activation='relu'),

 tf.keras.layers.MaxPooling2D(2,2),

 # Define a dropout regularization layer.

 tf.keras.layers.Dropout(rate=0.2),

 # Flatten the results to feed into a CNN

 tf.keras.layers.Flatten(),

 # 512 neuron hidden layer

 tf.keras.layers.Dense(512, activation='relu'),

 # 3 output neurons.

 tf.keras.layers.Dense(4, activation='softmax')

])

114

model.summary()

Compiling the model

from keras.callbacks import ModelCheckpoint

model_filename = 'cnn_model.h5'

callback_checkpoint = ModelCheckpoint(

 model_filename,

 verbose=1,

 monitor='val_loss',

 save_best_only=True,

)

from tensorflow.keras.optimizers import RMSprop

opt = tf.keras.optimizers.Adam(learning_rate=0.001)

model.compile(loss=

tf.keras.losses.CategoricalCrossentropy(from_logits=True,

name="categorical_crossentropy"),

 optimizer=opt,

 metrics=['accuracy',

tf.keras.metrics.Precision(thresholds=None),

tf.keras.metrics.Recall(thresholds=None)])

Train and validation datagen

from tensorflow.keras.preprocessing.image import ImageDataGenerator

All training images will be rescaled by 1./255

train_datagen = ImageDataGenerator(rescale=1/255)

Flow training images in batches of 256 using train_datagen generator

train_generator = train_datagen.flow_from_directory(

 '/content/drive/MyDrive/BananaDiseaseClassificationModel/CNN/Fi

nal/batch5/train/', # This is the source directory for training images

 target_size=(Height_size, Width_size), # All images will be

resized to 512x512

 batch_size=Batch_Size,

 # Since we use sparse_categorical_crossentropy loss, we need

categorical labels

 class_mode='categorical')

All validation images will be rescaled by 1./255

validation_datagen = ImageDataGenerator(rescale=1/255)

115

Flow validation images in batches of 128 using train_datagen

generator

validation_generator = train_datagen.flow_from_directory(

 '/content/drive/MyDrive/BananaDiseaseClassificationModel/CNN/Final/

batch5/test/', # This is the source directory for validation images

 target_size=(Height_size, Width_size), # All images will be

resized to 512x512

 batch_size=Batch_Size,

 # Since we use categorical_crossentropy loss, we need categorical

labels

 class_mode='categorical')

Train the model

start = time.time()

history = model.fit(

 train_generator,

 steps_per_epoch=94,

 epochs=100,

 validation_data=validation_generator,

 validation_steps = 24,

 verbose=1,

 callbacks=[callback_checkpoint])

end = time.time()

Training_time = end - start

print(f"Execution time: {round(Training_time, 5)} seconds")

Plot the performance graphs

f, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))

t = f.suptitle('CNN Performance', fontsize=12)

f.subplots_adjust(top=0.85, wspace=0.3)

max_epoch = len(history.history['accuracy'])+1

epoch_list = list(range(1,max_epoch))

ax1.plot(epoch_list, history.history['accuracy'], label='Train

Accuracy')

ax1.plot(epoch_list, history.history['val_accuracy'], label='Validation

Accuracy')

ax1.set_xticks(np.arange(1, max_epoch, 5))

ax1.set_ylabel('Accuracy Value')

ax1.set_xlabel('Epoch')

ax1.set_title('Accuracy')

l1 = ax1.legend(loc="best")

ax2.plot(epoch_list, history.history['loss'], label='Train Loss')

ax2.plot(epoch_list, history.history['val_loss'], label='Validation

Loss')

116

ax2.set_xticks(np.arange(1, max_epoch, 5))

ax2.set_ylabel('Loss Value')

ax2.set_xlabel('Epoch')

ax2.set_title('Loss')

l2 = ax2.legend(loc="best")

117

Appendix 6: Model Deployment Flutter Source Code

'package:banana_disease_detection/AboutDiseasesFragments/BlackSigatokaFragm

ents/BSDiseaseMitigationRecommendation.dart';

import

'package:banana_disease_detection/AboutDiseasesFragments/FusariumWiltRace1F

ragments/FWDiseaseMitigationRecommendation.dart';

import 'package:flutter/cupertino.dart';

import 'package:flutter/foundation.dart';

import 'package:flutter/material.dart';

import 'package:flutter/services.dart';

import 'package:persistent_bottom_nav_bar/persistent_tab_view.dart';

import

'package:banana_disease_detection/DetectFragments/CaptureImage.dart';

import 'package:banana_disease_detection/DetectFragments/UploadImage.dart';

import

'package:banana_disease_detection/AboutBananaFragments/BananaFarming.dart';

import

'package:banana_disease_detection/AboutBananaFragments/BananaTypes.dart';

import

'package:banana_disease_detection/AboutBananaFragments/BananaTypesWithMostY

ields.dart';

import

'package:banana_disease_detection/AboutBananaFragments/HighlyDemandedBanana

Types.dart';

import

'package:banana_disease_detection/AboutDiseasesFragments/BlackSigatoka.dart

';

import

'package:banana_disease_detection/AboutDiseasesFragments/FusariumWiltRace1.

dart';

import 'package:image_picker/image_picker.dart';

import 'dart:io';

import 'package:flutter_localizations/flutter_localizations.dart';

import 'package:flutter_gen/gen_l10n/app_localizations.dart';

import 'package:banana_disease_detection/classes/language_constants.dart';

import 'classes/language.dart';

import 'package:flutter_tflite/flutter_tflite.dart';

import 'package:flutter_spinkit/flutter_spinkit.dart';

import 'package:http/http.dart' as http;

import 'dart:convert';

void main() {

 runApp(const MyApp());

}

const String cnn = "ConvolutionalNeuralNetwork";

const String unet = "U-Net";

class MyApp extends StatefulWidget {

 const MyApp({Key? key}) : super(key: key);

 @override

 State<MyApp> createState() => _MyAppState();

 static void setLocale(BuildContext context, Locale newLocale) {

 _MyAppState? state = context.findAncestorStateOfType<_MyAppState>();

 state?.setLocale(newLocale);

 }

}

118

class _MyAppState extends State<MyApp> {

 Locale? _locale;

 setLocale(Locale locale) {

 setState(() {

 _locale = locale;

 });

 }

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 debugShowCheckedModeBanner: false,

 localizationsDelegates: AppLocalizations.localizationsDelegates,

 supportedLocales: AppLocalizations.supportedLocales,

 locale: _locale,

 // home: BottomNavBar(),

 home: const SplashScreen(),

 initialRoute: "/",

 routes: {

 },

);

 }

}

class SplashScreen extends StatefulWidget {

 const SplashScreen({Key? key}) : super(key: key);

 @override

 State<SplashScreen> createState() => _SplashScreenState();

}

class _SplashScreenState extends State<SplashScreen> {

 @override

 void initState() {

 // TODO: implement initState

 super.initState();

 Future.delayed(const Duration(seconds: 3)).then((value){

 Navigator.of(context).pushReplacement(

 CupertinoPageRoute(builder: (ctx) => const BottomNavBar()));

 });

 }

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 body: SizedBox(

 width: double.infinity,

 child: Column(

 mainAxisAlignment: MainAxisAlignment.center,

 children: const [

 Image(image: AssetImage("assets/images/logo.png"),

 width: 300,

),

 SizedBox(

 height: 50,

),

119

 SpinKitFadingCircle(

 color: Colors.green,

 size: 50.0,

),

],

),

),

);

 }

}

class BottomNavBar extends StatefulWidget {

 const BottomNavBar({Key? key}) : super(key: key);

 @override

 State<BottomNavBar> createState() => _BottomNavBarState();

}

class _BottomNavBarState extends State<BottomNavBar> {

 @override

 Widget build(BuildContext context) {

 List<Widget> _buildScreens() {

 return [

 const AboutBanana(),

 const Detect(),

 const AboutDiseases(),

 const Settings(),

];

 }

 List<PersistentBottomNavBarItem> _navBarsItems(){

 return [

 PersistentBottomNavBarItem(

 icon: const Icon(Icons.text_snippet),

 title: (AppLocalizations.of(context)!.menuAboutBanana),

 activeColorPrimary: Colors.green,

 inactiveColorPrimary: Colors.grey,

), PersistentBottomNavBarItem(

 icon: const Icon(Icons.energy_savings_leaf),

 title: (AppLocalizations.of(context)!.menuDetect),

 activeColorPrimary: Colors.green,

 inactiveColorPrimary: Colors.grey,

),

 PersistentBottomNavBarItem(

 icon: const Icon(Icons.sick),

 title: (AppLocalizations.of(context)!.menuAboutDiseases),

 activeColorPrimary: Colors.green,

 inactiveColorPrimary: Colors.grey,

),PersistentBottomNavBarItem(

 icon: const Icon(Icons.settings_outlined),

 title: (AppLocalizations.of(context)!.menuSettings),

 activeColorPrimary: Colors.green,

 inactiveColorPrimary: Colors.grey,

),

];

 }

 PersistentTabController controller;

120

 controller = PersistentTabController(initialIndex: 1);

 return PersistentTabView(

 context,

 screens:_buildScreens(),

 items: _navBarsItems(),

 controller: controller,

 confineInSafeArea: true,

 backgroundColor: Colors.white,

 handleAndroidBackButtonPress: true,

 resizeToAvoidBottomInset: true,

 stateManagement: true,

 hideNavigationBarWhenKeyboardShows: true,

 decoration: NavBarDecoration(

 borderRadius: BorderRadius.circular(10.0),

 colorBehindNavBar: Colors.white,

),

 popAllScreensOnTapOfSelectedTab: true,

 popActionScreens: PopActionScreensType.all,

 itemAnimationProperties: const ItemAnimationProperties(

 duration: Duration(milliseconds: 200),

 curve: Curves.ease,

),

 screenTransitionAnimation: const ScreenTransitionAnimation(

 animateTabTransition: true,

 curve: Curves.ease,

 duration: Duration(milliseconds: 200),

),

 navBarStyle:

 NavBarStyle.style3,

);

 }

}

// AboutBanana

class AboutBanana extends StatefulWidget {

 const AboutBanana({Key? key}) : super(key: key);

 @override

 State<AboutBanana> createState() => _AboutBananaState();

}

class _AboutBananaState extends State<AboutBanana> {

 @override

 Widget build(BuildContext context) {

 const banana_types = 'assets/images/banana_types.jpg';

 const banana_types_with_most_yields =

'assets/images/banana_types_with_most_yields.jpg';

 const highly_demanded_banana_types =

'assets/images/highly_demanded_banana_types.jpg';

 const banana_farming = 'assets/images/banana_farming.jpg';

 return Scaffold(

 appBar:

 AppBar(

 title: Text(AppLocalizations.of(context)!.titleAboutBanana),

 backgroundColor: Colors.green,

121

 actions: <Widget>[

 Padding(

 padding: const EdgeInsets.all(8.0),

 child: DropdownButton<Language>(

 underline: const SizedBox(),

 icon: const Icon(

 Icons.language,

 color: Colors.white,

),

 onChanged: (Language? language) async {

 if (language != null) {

 MyApp.setLocale(context, Locale(language.languageCode,

''));

 }

 },

 items: Language.languageList()

 .map<DropdownMenuItem<Language>>(

 (e) => DropdownMenuItem<Language>(

 value: e,

 child: Row(

 mainAxisAlignment: MainAxisAlignment.spaceAround,

 children: <Widget>[

 Text(

 e.flag,

 style: const TextStyle(fontSize: 30),

),

 Text(e.name)

],

),

),

)

 .toList(),

),

),

],

),

 body: GridView.count(

 primary: false,

 padding: const EdgeInsets.all(20),

 crossAxisSpacing: 10,

 mainAxisSpacing: 10,

 crossAxisCount: 2,

 children: <Widget>[

 GestureDetector(

 onTap: () {

 PersistentNavBarNavigator.pushNewScreenWithRouteSettings(

 context,

 settings: const RouteSettings(name: "/banana"),

 screen: const BananaTypes(),

 pageTransitionAnimation:

 PageTransitionAnimation.fade,

);

 },

 child: Card(

 clipBehavior: Clip.antiAlias,

 shape: RoundedRectangleBorder(

 borderRadius: BorderRadius.circular(8),

),

 color: Colors.white,

 child: Column(

122

 children: [

 Image.asset(

 banana_types,

 height: 140,

 width: 180,

 fit: BoxFit.cover,

),

 Padding(

 padding: const EdgeInsets.all(8).copyWith(bottom: 0),

 child: Text(

 AppLocalizations.of(context)!.cardBananaTypes,

 style: const TextStyle(

 fontWeight: FontWeight.bold,

 color: Colors.black,

 fontSize: 16,

),

),

),

],

)

),

),

 GestureDetector(

 onTap: () {

 PersistentNavBarNavigator.pushNewScreenWithRouteSettings(

 context,

 settings: const RouteSettings(name: "/banana"),

 screen: const BananaTypesWithMostYields(),

 pageTransitionAnimation:

 PageTransitionAnimation.fade,

);

 },

 child: Card(

 clipBehavior: Clip.antiAlias,

 shape: RoundedRectangleBorder(

 borderRadius: BorderRadius.circular(8),

),

 color: Colors.white,

 child: Column(

 children: [

 Image.asset(

 banana_types_with_most_yields,

 height: 120,

 width: 180,

 fit: BoxFit.cover,

),

 Padding(

 padding: const EdgeInsets.all(8).copyWith(bottom: 0),

 child: Text(

AppLocalizations.of(context)!.cardBananaTypesWithMostYields,

 style: const TextStyle(

 fontWeight: FontWeight.bold,

 color: Colors.black,

 fontSize: 16,

),

),

),

],

)

),

123

),

 GestureDetector(

 onTap: () {

 PersistentNavBarNavigator.pushNewScreenWithRouteSettings(

 context,

 settings: const RouteSettings(name: "/banana"),

 screen: const HighlyDemandedBananaTypes(),

 pageTransitionAnimation:

 PageTransitionAnimation.fade,

);

 },

 child: Card(

 clipBehavior: Clip.antiAlias,

 shape: RoundedRectangleBorder(

 borderRadius: BorderRadius.circular(8),

),

 color: Colors.white,

 child: Column(

 children: [

 Image.asset(

 highly_demanded_banana_types,

 height: 120,

 width: 180,

 fit: BoxFit.cover,

),

 Padding(

 padding: const EdgeInsets.all(8).copyWith(bottom: 0),

 child: Text(

AppLocalizations.of(context)!.cardHighlyDemandedBananaTypes,

 style: const TextStyle(

 fontWeight: FontWeight.bold,

 color: Colors.black,

 fontSize: 16,

),

),

),

],

)

),

),

 GestureDetector(

 onTap: () {

 PersistentNavBarNavigator.pushNewScreenWithRouteSettings(

 context,

 settings: const RouteSettings(name: "/banana"),

 screen: const BananaFarming(),

 pageTransitionAnimation:

 PageTransitionAnimation.fade,

);

 },

 child: Card(

 clipBehavior: Clip.antiAlias,

 shape: RoundedRectangleBorder(

 borderRadius: BorderRadius.circular(8),

),

 color: Colors.white,

 child: Column(

 children: [

 Image.asset(

 banana_farming,

124

 height: 140,

 width: 180,

 fit: BoxFit.cover,

),

 Padding(

 padding: const EdgeInsets.all(8).copyWith(bottom: 0),

 child: Text(

 AppLocalizations.of(context)!.cardBananaFarming,

 style: const TextStyle(

 fontWeight: FontWeight.bold,

 color: Colors.black,

 fontSize: 16,

),

),

),

],

)

),

),

],

)

);

 }

}

// Detect

class Detect extends StatefulWidget {

 const Detect({Key? key}) : super(key: key);

 @override

 State<Detect> createState() => _DetectState();

}

class _DetectState extends State<Detect> {

 String _model = cnn;

 File? file;

 List? _outputs;

 ImagePicker image = ImagePicker();

 Future predictImage(XFile image) async {

 switch (_model) {

 case unet:

 await segmentImage(image);

 break;

 default:

 await classifyImage(image);

 // await recognizeImageBinary(image);

 }

 }

 @override

 void initState() {

 super.initState();

 loadModel().then((value) {setState((){});});

 }

 Future segmentImage(XFile image) async {

 int startTime = DateTime.now().millisecondsSinceEpoch;

 var output = await Tflite.runSegmentationOnImage(

 path: image.path,

125

 imageMean: 127.5,

 imageStd: 127.5,

);

 setState(() {

 _outputs = output!;

 });

 print(_outputs);

 int endTime = DateTime.now().millisecondsSinceEpoch;

 print("Inference took ${endTime - startTime}ms");

 }

 Future classifyImage(XFile image) async {

 int startTime = DateTime.now().millisecondsSinceEpoch;

 var output = await Tflite.runModelOnImage(

 path: image.path,

 numResults: 1,

 threshold: 0.05,

 imageMean: 127.5,

 imageStd: 127.5,

);

 setState(() {

 _outputs = output!;

 });

 print(_outputs);

 int endTime = DateTime.now().millisecondsSinceEpoch;

 print("Inference took ${endTime - startTime}ms");

 }

 Future<void> sendImage(String path) async {

 String url = 'http://192.168.1.248:5000/api/';

 Map<String, String> headers = {

 'Content-Type': 'application/json', // Adjust the content type as

needed

 };

 Map<String, String> body = {

 'imageBase64': path,

 };

 String jsonBody = jsonEncode(body);

 try {

 final response = await http.post(

 Uri.parse(url),

 headers: headers,

 body: jsonBody,

);

 if (response.statusCode == 200) {

 print('Image uploaded successfully');

 Map<String, dynamic> data = jsonDecode(response.body);

 List<Map<String, dynamic>> output = [

 {'confidence': data["confidence_score"], 'label':

data['class_name']}];

 print("output test");

 setState(() {

 _outputs = output!;

126

 });

 print(_outputs);

 } else {

 print('Image upload failed. Status code: ${response.statusCode}');

 print('Response body: ${response.body}');

 }

 } catch (e) {

 print('Error sending image: $e');

 }

 }

 Future<String> imageToBase64(XFile file) async {

 List<int> imageBytes = await file!.readAsBytes();

 return base64Encode(imageBytes);

 }

 Future loadModel() async {

 try {

 String res;

 switch (_model) {

 case unet:

 res = (await Tflite.loadModel(

 model: "assets/model/unet_sept.tflite",

 labels: "assets/model/unet_labels.txt",

 // useGpuDelegate: true,

))!;

 break;

 default:

 res = (await Tflite.loadModel(

 model: "assets/model/cnn_model.tflite",

 labels: "assets/model/label.txt",

 // useGpuDelegate: true,

))!;

 }

 print(res);

 } on PlatformException {

 print('Failed to load model.');

 }

 }

 @override

 void dispose() {

 Tflite.close();

 super.dispose();

 }

 @override

 Widget build(BuildContext context) {

 final ButtonStyle style = ElevatedButton.styleFrom(

 textStyle:

 const TextStyle(fontSize: 20),

 backgroundColor: Colors.green[600],

 shadowColor: Colors.green[600],

 elevation: 10,

);

 List<Widget> stackChildren = [];

127

 if (_model == cnn) {

 if (_outputs == null) {

 print("Null");

 } else {

 stackChildren.add(Center(

 child: Column(

 children: _outputs!.map((res) {

 return Column(

 children: <Widget>[

 Text(

 "${res["label"]}: ${(res["confidence"])}%",

 textAlign: TextAlign.center,

 style: TextStyle(

 color: Colors.green,

 fontSize: 30.0,

 background: Paint()

 ..color = Colors.white,

),

),

 if(res["label"] == 'healthy' || res["label"] ==

'not_banana')...[] else...[

 const SizedBox(height: 20),

 ElevatedButton(

 style: style,

 onPressed: () {

 if (res["label"] == 'black_sigatoka') {

 PersistentNavBarNavigator

 .pushNewScreenWithRouteSettings(

 context,

 settings: const RouteSettings(name: "/home"),

 screen: const

BSDiseaseMitigationRecommendation(),

 pageTransitionAnimation:

PageTransitionAnimation

 .fade,

);

 } else if (res["label"] == 'fusarium_wilt'){

 PersistentNavBarNavigator

 .pushNewScreenWithRouteSettings(

 context,

 settings: const RouteSettings(name: "/home"),

 screen: const

FWDiseaseMitigationRecommendation(),

 pageTransitionAnimation:

PageTransitionAnimation

 .fade,

);

 } else {

 }

 },

 child: Text(AppLocalizations.of(context)!

 .buttonMitigationRecommendation),

),

],

],

);

 }).toList(),

),

));

 }

128

 } else if (_model == unet) {

 if (_outputs == null) {} else {

 stackChildren.add(Positioned(

 child: Container(

 decoration: BoxDecoration(

 image: DecorationImage(

 alignment: Alignment.topCenter,

 image: MemoryImage(

 Uint8List.fromList(

 _outputs!.map((e) =>

int.parse(e.toString())).toList()

)

),

 fit: BoxFit.fill)),

 child: Opacity(

 opacity: 0.3, child: Image.file(File(file!.path)))),

),

);

 }

 }

 return Scaffold(

 appBar:

 AppBar(

 title: Text(AppLocalizations.of(context)!.titleDetect),

 backgroundColor: Colors.green,

 actions: <Widget>[

 Padding(

 padding: const EdgeInsets.all(8.0),

 child: DropdownButton<Language>(

 underline: const SizedBox(),

 icon: const Icon(

 Icons.language,

 color: Colors.white,

),

 onChanged: (Language? language) async {

 if (language != null) {

 MyApp.setLocale(context, Locale(language.languageCode,

''));

 }

 },

 items: Language.languageList()

 .map<DropdownMenuItem<Language>>(

 (e) => DropdownMenuItem<Language>(

 value: e,

 child: Row(

 mainAxisAlignment: MainAxisAlignment.spaceAround,

 children: <Widget>[

 Text(

 e.flag,

 style: const TextStyle(fontSize: 30),

),

 Text(e.name)

],

),

),

)

 .toList(),

),

),

],

129

),

 body: CustomScrollView(

 slivers: <Widget>[

 SliverToBoxAdapter(

 child: Padding(

 padding: const EdgeInsets.all(8).copyWith(bottom: 0),

 child: Column(

 children: <Widget>[

 Container(

 height: 400,

 width: 400,

 color: Colors.black12,

 child: file == null

 ? const Icon(

 Icons.image,

 size: 50,

)

 : Image.file(

 file!,

 fit: BoxFit.fill,

),

),

 const SizedBox(height: 20),

 ElevatedButton(

 style: style,

 onPressed: () {

 getcam();

 },

 child:

Text(AppLocalizations.of(context)!.buttonCaptureImage),

),

 ElevatedButton(

 style: style,

 onPressed: () {

 getgall();

 },

 child:

Text(AppLocalizations.of(context)!.buttonUploadImage),

),

 const SizedBox(height: 30),

 Stack(

 children: stackChildren,

),

],

),

),

),

],

),

);

 }

 // Camera Functions

 getcam() async {

 // ignore: deprecated_member_use

 var img = await image.pickImage(source: ImageSource.camera);

 if (img == null) return null;

 setState(() {

 file = File(img!.path);

 });

130

 //predictImage(img);

 Uint8List imagebytes = await img.readAsBytes(); //convert to bytes

 String base64string = base64.encode(imagebytes); //convert bytes to

base64 string

 sendImage(base64string);

 }

 // Gallery Functions

 getgall() async {

 // ignore: deprecated_member_use

 var img = await image.pickImage(source: ImageSource.gallery);

 if (img == null) return null;

 setState(() {

 file = File(img!.path);

 });

 // predictImage(img);

 Uint8List imagebytes = await img.readAsBytes(); //convert to bytes

 String base64string = base64.encode(imagebytes); //convert bytes to

base64 string

 sendImage(base64string);

 }

}

// AboutDiseases

class AboutDiseases extends StatefulWidget {

 const AboutDiseases({Key? key}) : super(key: key);

 @override

 State<AboutDiseases> createState() => _AboutDiseasesState();

}

class _AboutDiseasesState extends State<AboutDiseases> {

 @override

 Widget build(BuildContext context) {

 const urlBSImage = 'assets/images/Black_Sigatoka.jpg';

 const urlFWImage = 'assets/images/Fusarium_Wilt.jpg';

 return Scaffold(

 appBar:

 AppBar(

 title: Text(AppLocalizations.of(context)!.titleAboutDiseases),

 backgroundColor: Colors.green,

 actions: <Widget>[

 Padding(

 padding: const EdgeInsets.all(8.0),

 child: DropdownButton<Language>(

 underline: const SizedBox(),

 icon: const Icon(

 Icons.language,

 color: Colors.white,

),

 onChanged: (Language? language) async {

 if (language != null) {

 MyApp.setLocale(context, Locale(language.languageCode,

''));

 }

131

 },

 items: Language.languageList()

 .map<DropdownMenuItem<Language>>(

 (e) => DropdownMenuItem<Language>(

 value: e,

 child: Row(

 mainAxisAlignment: MainAxisAlignment.spaceAround,

 children: <Widget>[

 Text(

 e.flag,

 style: const TextStyle(fontSize: 30),

),

 Text(e.name)

],

),

),

)

 .toList(),

),

),

],

),

 body: CustomScrollView(

 slivers: <Widget>[

 SliverToBoxAdapter(

 child: Padding(

 padding: const EdgeInsets.all(8).copyWith(bottom: 0),

 child: Card(

 clipBehavior: Clip.antiAlias,

 shape: RoundedRectangleBorder(

 borderRadius: BorderRadius.circular(24),

),

 color: Colors.white,

 child: Column(

 children: [

 Stack(

 children: [

 Image.asset(

 urlBSImage,

 height: 180,

 width: 400,

 fit: BoxFit.cover,

),

 Positioned(

 bottom: 16,

 right: 16,

 left: 16,

 child: Text(

AppLocalizations.of(context)!.textBlackSigatoka,

 style: const TextStyle(

 fontWeight: FontWeight.bold,

 color: Colors.white,

 fontSize: 24,

),

),

),

],

),

 Padding(

132

 padding: const EdgeInsets.all(8).copyWith(bottom: 0),

 child: Text(

AppLocalizations.of(context)!.textBlackSigatokaIntro,

 style: const TextStyle(fontSize: 14, color:

Colors.black),

),

),

 ButtonBar(

 alignment: MainAxisAlignment.end,

 children: [

 TextButton(

 onPressed: () {

PersistentNavBarNavigator.pushNewScreenWithRouteSettings(

 context,

 settings: const RouteSettings(name:

"/diseases"),

 screen: const BlackSigatoka(),

 pageTransitionAnimation:

PageTransitionAnimation.fade,

);

 },

 child: Text(

AppLocalizations.of(context)!.buttonBSLearnMore,

 style: const TextStyle(fontSize: 14, color:

Colors.green),

)

),

],

)

],

)

),

),

),

 SliverToBoxAdapter(

 child: Padding(

 padding: const EdgeInsets.all(8).copyWith(bottom: 0),

 child: Card(

 clipBehavior: Clip.antiAlias,

 shape: RoundedRectangleBorder(

 borderRadius: BorderRadius.circular(24),

),

 color: Colors.white,

 shadowColor: Colors.grey,

 child: Column(

 children: [

 Stack(

 children: [

 Image.asset(

 urlFWImage,

 height: 180,

 width: 400,

 fit: BoxFit.cover,

),

 Positioned(

 bottom: 16,

 right: 16,

 left: 16,

133

 child: Text(

AppLocalizations.of(context)!.textFusariumWiltRace1,

 style: const TextStyle(

 fontWeight: FontWeight.bold,

 color: Colors.white,

 fontSize: 24,

),

),

),

],

),

 Padding(

 padding: const EdgeInsets.all(8).copyWith(bottom:

0),

 child: Text(

AppLocalizations.of(context)!.textFusariumWiltRace1Intro,

 style: const TextStyle(fontSize: 14, color:

Colors.black),

),

),

 ButtonBar(

 alignment: MainAxisAlignment.end,

 children: [

 TextButton(

 onPressed: () {

PersistentNavBarNavigator.pushNewScreenWithRouteSettings(

 context,

 settings: const RouteSettings(name:

"/diseases"),

 screen: const FusariumWiltRace1(),

 pageTransitionAnimation:

PageTransitionAnimation.fade,

);

 },

 child: Text(

AppLocalizations.of(context)!.buttonFWLearnMore,

 style: const TextStyle(fontSize: 14, color:

Colors.green),

)

),

],

)

],

)

),

),

),

],

),

);

 }

}

// Settings

class Settings extends StatefulWidget {

 const Settings({Key? key}) : super(key: key);

134

 @override

 State<Settings> createState() => _SettingsState();

}

class _SettingsState extends State<Settings> {

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar:

 AppBar(

 title: Text(AppLocalizations.of(context)!.titleSettings),

 backgroundColor: Colors.green

),

 body: Center(

 child: Column(

 mainAxisSize: MainAxisSize.min,

 children: <Widget>[

 DropdownButton<Language>(

 iconSize: 30,

 hint: Text(AppLocalizations.of(context)!.textChangeLanguage),

 onChanged: (Language? language) async {

 if (language != null) {

 MyApp.setLocale(context, Locale(language.languageCode,

''));

 }

 },

 items: Language.languageList()

 .map<DropdownMenuItem<Language>>(

 (e) => DropdownMenuItem<Language>(

 value: e,

 child: Row(

 mainAxisAlignment: MainAxisAlignment.spaceAround,

 children: <Widget>[

 Text(

 e.flag,

 style: const TextStyle(fontSize: 30),

),

 Text(e.name)

],

),

),

)

 .toList(),

),

],

),

),

);

 }

}

135

RESEARCH OUTPUTS

i) Journal Paper

Elinisa, C. A., & Mduma, N. (2024). Mobile-Based Convolutional Neural Network Model for

the Early Identification of Banana Diseases. Smart Agricultural Technology, 100423.

ii) Poster Presentation

136

OUTPUT 2: Poster Presentation

